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Executive Summary 
 

The purpose of the Software Development Estimating Guidebook is to provide the cost analyst with a 
resource manual to use in developing credible software development cost estimates.  A realistic estimate is 
based upon a solid understanding of the software development process and the historical data that forms a 
framework for the expected values.  An estimating methodology that follows a proven process consistent 
with best practices and Department of Defense (DoD) policies further contributes to estimate validity. 

The information is presented at two levels.  One level will help the experienced analyst immediately focus 
on the material necessary to develop an estimate.  The second level of information is for the novice, or 
infrequent user, to use as educational information regarding the software development and estimating 
processes.   

The estimating process starts with a determination of the purpose of the estimate.  Next, the cost (or effort) 
and schedule for the software development project are determined using three factors: effective size, 
development environment, and product complexity. 

The key, and most important, element in the software estimate is the effective size of the software product.  
Determining size can be approached from several directions depending upon the software size measure 
(lines of code, function points, use cases, etc.) used by the development organization.  A system developed 
by writing lines of code requires a different estimating approach than a previously developed or off-the-
shelf application.  The acquisition phase also influences the analyst’s approach because of the amount and 
type of software development data available from the program or developers. 

The development environment is the next most important effort and schedule driver.  The environment can 
be factored into five categories: (1) developer capability or efficiency, (2) personnel experience, (3) 
development system characteristics, (4) management characteristics, and (5) product characteristics.  The 
last four categories are largely driven by the product requirements.   These factors take into consideration 
the development environment itself, the capabilities and experience of the developers, the developing 
organization’s management style, security requirements, and so on.  These factors, along with software size 
and complexity, combine to determine the productivity or efficiency with which a developer can “build” 
and test the software.  Ultimately, these environment characteristics drive the cost and schedule of the 
software development and implementation of the system. 

It is uncertain who first coined the phrase, “A fool with a tool is still a fool.”  Plugging numbers into a 
parametric model without knowing if the results are realistic fits this adage.  This guidebook addresses 
estimate realism using historical data, industry best practices, and authoritative insight.  The insight comes 
from experts in the fields of software development and cost estimating.  This information helps the analyst 
conduct a “sanity check” of their estimate results.  A well-understood and validated estimate offers a 
defensible position for program office analysts, component cost agency analysts, and independent 
evaluators.  A reasonable estimate is useful in budgeting, milestone decision reviews, and determining the 
life cycle or other costs of the program. 

The contents of this guide, ten sections and nine appendices, are grouped into four major parts.  An 
introduction and the basics of the software development process lead off the tutorial. The next two major 
parts cover the estimating process and related details.  Finally, concepts and examples presented in the 
sections are expanded in a set of appendices.  The idea behind this structure is to present principles for 
instruction and reference in the core sections and, then, examine details and related examples. 

The information herein is not intended to dictate policy or supplant guidance given in official documents.  
However, the authors hope that everyone within the software cost estimating community in both the public 
and private sectors will find it useful.   The extent of information on software development and cost 
estimating presented within these pages is not intended to be all-inclusive.  Yet, the guidebook is meant to 
be comprehensive and complete, providing a single-resource document for use in creating estimates.  
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Section 1  
Introduction 

The term “software crisis” refers to a set of problems that highlight the need 
for changes in our existing approach to software development. The term 
“software crisis” originated sometime in the late 1960s about the time of the 
1968 NATO Conference on Software Engineering.   One of the most 
dominant and serious complaints arising from the software crisis was the 
inability to estimate, with acceptable accuracy, the cost, resources, and 
schedule required for a software development project.   

Crisis is a strong word.  It suggests a situation that demands resolution.  The 
conditions that represent the crisis will be altered, either toward favorable 
relief or toward a potential disaster.  According to Webster’s definition, a 
crisis is “a crucial or decisive point or situation.”  By now, the crisis should 
have been resolved one way or another. 

A notion pervading the conference was that we can engineer ourselves out 
of any problem.  Hence, the term “software engineering” was coined. One 
of the significant conference outputs was a software engineering 
curriculum.  The curriculum happened to be identical to the computer 
science curriculum of that day.   

A list of software problems was presented as major development concerns 
at the 1968 NATO Conference.  The problem list included software that 
was: 

• Unreliable 
• Delivered late 
• Prohibitive in terms of modification costs  
• Impossible to maintain 
• Performing at an inadequate level 
• Exceeding budget costs 

The software development problems listed in 1968 are still with us today.  
Each of these complaints can be traced to the inability to correctly estimate 
development costs and schedule.  Traditional intuitive estimation methods 
have consistently produced optimistic results which contribute to the all too 
familiar cost overruns and schedule slips.  In retrospect, the term exigence1

Most humans, especially software developers, are inherent optimists.  When 
was the last time you heard something like, “It can’t be that bad,” “It 
shouldn’t take more than two weeks to finish,” or, best of all, “We are 90 
percent complete?”  Estimates need to be based on facts (data), not warm 
feelings or wishful thinking.  In other words, hope is not a management 
strategy, nor is it an estimating approach.   

 
fits the situation better than “crisis” since there is no discernable point of 
change for better or worse. 

                                                 
1 Exigence: The state of being urgent or pressing; urgent demand; urgency; a pressing 
necessity. 

Predicting is very hard, especially when it 
is about the future. 

        Yogi Berra 

…It was also becoming painfully 
evident that estimating the cost of 
technologically state-of-the-art 
projects was an inexact science.  
The experts, in spite of their 
mountains of numbers, seemingly 
used an approach descended from 
the technique widely used to weigh 
hogs in Texas.  It is alleged that in 
this process, after catching the hog 
and tying it to one end of a teeter-
totter arrangement, everyone 
searches for a stone which, when 
placed on the other end of the 
apparatus, exactly balances the 
weight of the hog.  When such a 
stone is eventually found, everyone 
gathers around and tries to guess 
the weight of the stone.  Such is the 
science of cost estimating.  But 
then, economics has always been 
known as the dismal science. 

 Augustine’s Laws 
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The cost and schedule estimating problem can be described by the following 
statement: 

More software projects have gone awry for lack of calendar time than 
for all other causes combined.  Why is this cause of disaster so 
common? 

First, our techniques of estimating are poorly developed.  More 
seriously, they reflect an unvoiced assumption which is quite untrue, i.e., 
that all will go well. 

Second, our estimating techniques fallaciously confuse effort with 
progress, hiding the assumption that men and months are 
interchangeable. 

Third, because we are uncertain of our estimates, software managers 
often lack the courteous stubbornness of Antoine’s chef. 

Fourth, schedule progress is poorly monitored.  Techniques proven and 
routine in other engineering disciplines are considered radical 
innovations in software engineering. 

Fifth, when schedule slippage is recognized, the natural (and 
traditional) response is to add manpower.  ’Like dousing a fire with 
gasoline, this makes matters worse, much worse.  More fire requires 
more gasoline and thus begins a regenerative cycle that ends in 
disaster.’2

The rapidly increasing cost of software has led customers for these products 
to become less willing to tolerate the uncertainty and losses associated with 
inaccurate cost and schedule estimates, unless the developer is willing to 
accept a significant portion of that risk.  This customer pressure emphasizes 
the need to use an estimating method that can be applied early in the 
software development when tradeoff studies and investment decisions are 
made.  The estimating method must consider the characteristics of the 
development organization and the environmental effects imposed by the 
development task, as well as the application size and complexity. 

 

Estimating is magic for most estimators and managers.  Well-known science 
fiction author Arthur C. Clarke’s Third Law3

Estimating tools produce estimates from a set of inputs that describe the 
software and the environment.  The result is a development cost and 
schedule.  If neither the estimator, nor the manager, understands the 
algorithm behind the estimate, then the estimate has crossed into the realm of 
magic.  The result is a development cost and schedule estimate – which is 
never wrong.  Estimate accuracy appears to increase with the number of 
significant digits.     

 states: “Any sufficiently 
advanced technology is indistinguishable from magic.”  This illustrates one 
of the primary problems with software estimating today.  The “magic” 
creates an environment of unreasonable trust in the estimate and lack of 
rational thought, logical or otherwise.   

With magic we expect the impossible, and so it is with estimating as well.  
When something is magic, we don’t expect it to follow logic, and we don’t 
apply our common sense.  When the estimate is not the cost and schedule we 

                                                 
2 Brooks, F.P. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Reading, MA:  1975. 
3 Clarke, Arthur C. Clarke. Profiles of the Future. 1961. 
 

es·ti·mate 
To make a judgment as to the 
likely or approximate cost, 
quality, or extent of; calculate 
approximately…estimate may 
imply judgment based on rather 
rough calculations. 

    American Heritage Dictionary 

 

Antoine's is a New Orleans 
restaurant whose menu states: good 
cooking takes time. If you are made 
to wait, it is to serve you better and 
to please you. 
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want, we can simply change the inputs to the algorithm and produce the 
estimate we desire.  Since the tool has magical properties, we can suspend 
reality and make any estimate come true.  That is why so many projects 
overrun and we consistently blame the failure on the projects, not the 
estimates.   

As demonstrated, software cost estimation is a discipline sometimes equated 
with mystical forms of prognostication, in which signs and indications are 
used to foretell or predict the future.  Some suggest that a venerable person 
of recognized experience and foresight with far-seeing wisdom and prudence 
is required to create accurate cost estimates.  These points have merit as cost 
estimation may fittingly be considered a blend of art and science.  Yet, with 
proper knowledge and experience wisely applied, the discipline of software 
cost estimating becomes more science than knack. 

Several cost and schedule estimation methods have been proposed over the 
last 25 years with mixed success due, in part, to limitations of the estimation 
models.  A significant part of the estimate failures can be attributed to a lack 
of understanding of the software development environment and the impact of 
that environment on the development schedule and cost.  The environment 
imposed by the project manager is a major driver in the software equation.  

Organizations need both managers and estimators.  Managers make 
infrequent estimates to support their decisions.  Estimators, like any 
specialist, need to perform frequent estimates to track development progress, 
increase estimating experience, and maintain process and tool proficiency. 

Software cost estimating is an essential part of any system acquisition 
process.  Fiscal constraints, the mission of service-level and command cost 
agencies, and program office responsibilities further highlight the 
importance of a solid understanding of software cost estimating principles 
and the need for credible resources.   

Estimation seeks to answer questions such as: 

• Is the estimate reasonable?   

• Has a similar system been developed before?   

• How long should the development take? 

• How much should the development cost?   

• How does size, cost, and schedule data from other 
projects relate to this system?   

• If developers claim their software development 
productivity is 1,000 lines of source code per 
month, are the claims realistic?   

A sound software cost estimate is developed by employing recognized and 
accepted estimating methodologies.  As an analyst, you can determine that 
your estimate is credible by using historical data, cost estimating 
relationships, and having an understanding of the tools or models used. 

Estimating the cost, schedule and resources for a software development 
project requires training, experience, access to historical information related 
to the software domain under consideration, and the confidence to commit to 
the estimate even when the project information is qualitative and lacks detail.  
All software estimates carry inherent risks from several views.  For example, 
all estimating tools are the results of regression analysis (curve fitting) to 
historic project data that is inconsistent in nature.  Data is collected from 

Programming a computer 
does require intelligence.  
Indeed, it requires so much 
intelligence that nobody really 
does it very well.  Sure, some 
programmers are better than 
others, but we all bump and 
crash around like overgrown 
infants.  Why?  Because 
programming computers is by 
far the hardest intellectual 
task that human beings have 
ever tried to do.  Ever. 

G.M. Weinberg, 1988 
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many sources, each with its own definition of size, complexity, productivity, 
and so on.  Knowledge of the software project is somewhat subjective in 
terms of size, complexity, the environment, and the capabilities of the 
personnel working on project development.   

Risk represents the degree of uncertainty in the cost and schedule estimates.  
If the scope of the system under development is poorly understood, or the 
software requirements are not firm, uncertainty can become extreme.  
Software requirements in an ideal world should be complete and specified at 
a level that is sufficient to the maturity of the system.  Interfaces should also 
be complete and stable to reduce the instability of the software development 
and the development estimate.   

1.1 Development constraints 
There is a model of software development as seen from the project control 
point of view.  This model has only four variables: 

• Cost 
• Schedule 
• Quality 
• Scope 

The shareholders (users, customers, etc. – all external to the development) 
are allowed to set three of the four variables; the value of the fourth variable 
will be determined by the other three. 

Some managers attempt to set all four variables, which is a violation of the 
rules.  When one attempts to set all four, the first visible failure is a decrease 
in product quality.  Cost and schedule will then increase in spite of our most 
determined efforts to control them.  If we choose to control cost and 
schedule, quality and/or scope become dependent variables.   

The values for these attributes cannot be set arbitrarily.  For any given 
project, the range of each value is constrained.  If any one of the values is 
outside the reasonable range, the project is out of control.  For example, if 
the scope (size) is fixed, there is a minimum development time that must be 
satisfied to maintain that scope.  Increasing funding to decrease the schedule 
will actually increase the schedule while increasing the project cost. 

Software estimating tools allow us to make the four variables visible so we 
can compare the result of controlling any, or all, of the four variables (look at 
them as constraints) and their effect on the product. 

1.2 Major cost factors 
There are four major groups of factors that must be considered or accounted 
for when developing a software cost and schedule estimate.  The factor 
groups are: (1) effective size, (2) product complexity,  
(3) development environment, and (4) product characteristics.   

The following sections briefly describe each of the major factor groups.  

  

Project Uncertainty Principle 

If you understand a project, you 
won’t know its cost, and vice versa. 

Dilbert (Scott Adams) 
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1.2.1 Effective size 
Effective size is a quantification of the effort required to produce a software 
product.  It does not directly correlate with the physical product size.  
Software size is the most important cost and schedule driver, yet it is the 
most difficult to determine.  Size prediction is 
difficult enough that many methods have been 
created to alleviate the problem.  These measures 
include effective source lines of code (ESLOC), 
function points, object points, and use cases, as 
well as many variants.   

Size has a major impact on the management of 
software development in terms of cost and 
schedule.  An Aerospace Corporation study by 
Long et al4

The Aerospace study also showed that schedule is not arbitrary.  There is an 
apparent minimum development schedule related to size.  The assumption 
that by front-loading project staff the project will decrease its schedule 
below a minimum development time is faulty.  This is sometimes referred to 
as the software Paul Masson Rule; that is, “We will deliver no software 
before its time.” 

 that examined 130 military software 
development projects demonstrates some of the 
constraints on development imposed by the 
magnitude of the software project.  Of the 130 
projects shown in Figure 1-1, no Computer 
Software Configuration Item (CSCI) over 200 
thousand effective source lines of code (KESLOC) 
was successfully completed or delivered.  A project 
effective size of 200 KESLOC requires a team of 
approximately 100 development and test personnel, a development schedule 
of four years, and nearly 3,000 person months of effort.  The average 
turnover rate for software personnel is less than four years.  Managing a 
team of 100 people in a single development area is not trivial.   

Effective software size is discussed in detail in Section 6.  

1.2.2 Product complexity 
Software complexity is an all-embracing notion referring to factors that 
decide the level of difficulty in developing software projects.  There are 
many facets to the value we refer to as complexity.  Here we will only touch 
upon the effects of product complexity and its importance in cost and 
schedule estimation.  First, complexity limits the rate at which a project can 
absorb development personnel.  It also limits the total number of people that 
can effectively work on the product development.  Small development teams 
are actually more productive per person than large teams; hence, the limiting 
action of complexity correlates with higher productivity.  At the same time, 
the skill set necessary to build an operating system is not interchangeable 
with that of a payroll system developer. 

Complexity is discussed in detail in Section 10.  

                                                 
4 Long, L., K. Bell, J. Gayek, and R. Larson. “Software Cost and Productivity 
Model.” Aerospace Report No. ATR-2004(8311)-1.  Aerospace Corporation. El 
Segundo, CA:  20 Feb 2004. 

 
Figure 1-1: Achievable development schedule based on 130 military 

software projects 

We will sell no wine before its time. 

Paul Masson advertisement, 1980  
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1.2.3 Development environment 
The development environment is a major, yet often ignored, factor in 
development productivity and the resulting development cost and schedule.  
The environment may be divided into two areas: developer capability and 
project-specific development environment.  At the core of the development 
environment measure is the raw capability of the developer.  This includes 
application experience, creativity, ability to work as a team, and the use of 
modern practices and tools.  It is hard to directly assess the capability or the 
environment, but by looking at the individual, independent facets of the 
environment (shown in Figure 1-2), a cohesive, rational measure can be 
obtained.   

The development environment is discussed in detail in Sections 8 (developer 
capability) and 9 (development environment).   

For estimates conducted early in the acquisition – when the developer and 
environment are unknown – typical productivity factors that assume a 
generic developer and environment can be used to obtain a “ballpark” 
estimate.  This technique is described in Section 7. 

1.2.4 Product characteristics 
Product characteristics describe the software product to be developed.  These 
characteristics are specific to a class of products; for example, a military 
space payload.  The characteristics include timing and memory constraints, 
amount of real-time processing, requirements volatility, user interface 
complexity, and development standards (among others).  Development 
standards, in turn, encompass the documentation, reliability, and test 
requirements characteristics of a project. 

The product characteristics generally limit or reduce the development 
productivity.  The characteristics for any application can be grouped into a 
product template that simplifies a system-level estimate.   

The elements of the product characteristics are discussed in detail in Section 
10.  

1.3 Software support estimation 
Software support costs usually exceed software development costs, primarily 
because software support costs involve much more than the cost of 
correcting errors.  Typically, the software product development cycle spans 
one to four years, while the maintenance phase spans an additional five to 15 
years for many programs.  Over time, as software programs change, the 
software complexity increases (architecture and structure deteriorate) unless 
specific effort is undertaken to mitigate deterioration5

Software maintenance cost estimates in 1976 ranged from 50 to 75 percent 
of the overall software life-cycle costs

.  

6.  The trend is about the same today in 
spite of the rapid increase in product size over time.  Historic project data7

                                                 
5 Belady, L.M., and  M.M. Lehman. “Characteristics of Large Systems.” Research 
Directions in Software Technology.  MIT Press. Cambridge, MA: 1979. 

 
shows that a program with a software development cost of about $100 per 

6 Boehm, B.W. “Software Engineering,” IEEE Transactions of Computers. 
Dec.1976: 1226-1241. 
7 Ibid., Boehm, B.W. 

 
  

Figure 1-2: Development 
environment facets 

 
 
 
 
 
 
     

PROJECT

PROCESS PEOPLE

ENVIRONMENT

PROJECT

PROCESS PEOPLE

ENVIRONMENT

Murphy's Law is an adage that 
broadly states that things will go 
wrong in any given situation, if 
you give them a chance. “If 
there’s more than one possible 
outcome of a job or task, and one 
of those outcomes will result in 
disaster or an undesirable 
consequence, then somebody will 
do it that way.” 
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source line can have long term maintenance costs that are near $4,000 per 
source line. 

Software maintenance is defined by Dr. Barry Boehm8

Software repair is another way of saying “corrective maintenance” – fixing 
implementation, processing, and performance related to the specified 
software requirements.  These failures may surface after delivery of the 
product in operational use.  The repair can also be related to errors or 
deficiencies known before the product was delivered, but deferred to 
maintenance because of funding or schedule issues during development.  
Maintenance costs during the period immediately following product delivery 
are normally high due to errors not discovered during the software 
development. 

 as:  "The process of 
modifying existing operational software while leaving its primary functions 
intact.”  His definition includes two types of activities: software repair and 
software enhancement. 

Software enhancement results from software requirements changes during 
and following product delivery.  Software enhancement includes:  

• Redevelopment or modification of portions of the existing software 
product. 

• Software adaptation (“adaptive”) to new processing or data 
environments. 

• Software performance and maintainability enhancements 
(“perfective”). 

In addition to repair and enhancement, the cost of maintenance must also 
include the cost of maintaining knowledge of the software structure and 
code.  The cost of this knowledge retention for a large software system often 
dominates the maintenance cost. 

1.4 Guidebook overview 
This guidebook is divided into major sections centered on key software 
development cost estimating principles.  The sections discussed include the 
following: 

• Software cost and schedule estimating introduction (Sections 1 
& 2) – The history, art, and science behind developing reasonable 
cost estimates. 

• Software development process (Section 2) – The evolution of 
software development, various methods or approaches, and key 
issues. 

• Levels of detail in software estimates (Section 3) – Guidelines 
and theory to help determine the best or most appropriate method 
for evaluating given data and formulating an estimate.  The cost of 
developing the system is just the tip of the iceberg when the cost 
over the entire life of the program is considered. 

• System level estimating process (Section 4) – A concise 
introduction to the software cost estimating process at the system 
level, taking place prior to knowledge of the software architecture.  

                                                 
8 Boehm, B.W. Software Engineering Economics  Prentice-Hall. Englewood Cliffs, 
NJ. 1981: 54. 
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This process assumes a generic developer and total effective 
software size, including growth.  Estimates include validation and 
effort allocation.    

• Component level estimating process (Section 5) – A concise 
introduction to the software cost and schedule estimating process at 
the component level using the effective component (CSCI) size 
including growth, the developer capability and environment, and 
product constraints to determine the development cost and schedule.  
Estimates include cost and schedule validation, as well as effort and 
schedule allocation. 

• Estimating effective size (Section 6) – A key element in 
determining the effort and subsequent cost and schedule is the size 
of the software program(s) within the system.  This section explains 
two primary methods of size estimation: effective source lines of 
code and function points. 

• Productivity factor evaluation (Section 7) – Software 
development effort estimates at the system level are dependent upon 
the effective size and the generic developer productivity for the 
given system type.  Productivity factors can be derived from 
historic industry data or from specific developer data (if available).   

• Evaluating developer capability (Section 8) – An important factor 
in a component level estimate is the developer’s capability, 
experience, and specific qualifications for the target software 
system.  This section explains the attributes that define developer 
capabilities in terms of efficiency or productivity.   

• Development environment evaluation (Section 9) – The 
development environment (management, work atmosphere, etc.) 
and product traits (complexity, language, etc.), combined with the 
developer’s skill and experience directly impact the cost of the 
development. This section quantitatively describes the impacts of 
the development environment in terms of productivity. 

• Product characteristics evaluation (Section 10) – The product 
characteristics (real-time operation, security, etc.) and constraints 
(requirements stability, memory, CPU, etc.) reduce the development 
efficiency and increase cost and schedule.  This section 
quantitatively describes the impacts of the product characteristics 
on development cost and schedule and the associated estimates. 

• Acronyms (Appendix A) – This appendix contains a list of the 
acronyms used in the guidebook and by the estimating tools 
supported by the guidebook. 

• Terminology (Appendix B) – This section contains definitions and 
terminology common to this guidebook and the software estimating 
discipline. 

• Bibliography (Appendix C) – This section contains a list of useful 
resources for software development cost and schedule estimators.  
The list also includes material useful for software development 
planners and managers. 

• Software life cycle approaches (Appendix D) – This appendix 
provides background information describing the common software 
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development approaches and discusses topics such as spiral and 
incremental development.  

• Software estimating models (Appendix E) – This section 
describes the myriad of estimate types and models available for the 
software cost and schedule estimator.   

• System-level estimate case study (Appendix F) – This section 
walks the reader through a system-level estimate example, 
incorporating the processes, practices, and background material 
introduced in the core sections of the guidebook. 

• Component-level estimate case study (Appendix G) – This 
section, like the previous section, works through an in-depth 
example at the component level. 

• The Defense Acquisition System (Appendix H) – This appendix 
provides background information describing the defense acquisition 
framework and how software estimates fit into that process.   

• Data collection (Appendix I) – Data collection (as highlighted in 
the core sections) without efforts to validate and normalize it is of 
limited value.  This section provides guidelines, instructions, and 
suggested formats for collecting useful data.   
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Figure 2-1: Defense Acquisition Management Framework 

Section 2 
Software Development Process 

The phrase “software life cycle” became popular in the 1970s.  The phrase 
caught on and has remained in use because it conveys an impression of 
multiple phases and extended life in the software development process.  The 
previously popular conception of computer programs as items that are 
developed inside someone’s head, coded, and used for a day or 10 years 
without change has frustrated most people in the industry at one time or 
another.  The facts are, and have been for some time, that coding represents 
only a small percentage of the money and effort spent on a typical software 
system.   

One often-used effort division model assumes percentage split of 40/20/40 
for the analysis/design-code-test/integration phases, respectively.  Most 
modern software estimating tools assume an effort division percentage of 
40/20/40 or 40/30/30.  If the maintenance phase is included, the relative 
percentage for coding drops to an even lower value because maintenance 
cost/time tends to exceed any other phase.  Thus, the concept of a life cycle 
is welcome and realistic because it calls attention to phases other than coding 
and emphasizes the fact that software systems “live” a long, long time. 

There are many representations of a life cycle.  Each software industry 
subculture has its own – or several – representations, and each representation 
tends to be modified somewhat for specific projects.  There are many generic 
approaches that characterize the software development process.  Some of the 
approaches (process models) that are in use today are described in Appendix 
D.  A generic engineering process, known as the waterfall model, is used in 
this section to describe the activities in the typical process. 

2.1 The Defense Acquisition System 
The software development process fits into a larger acquisition process 
referred to as the Defense Acquisition Management Framework9

2.1.1 Framework elements 

, which is a 
continuum of activities that represent or describe acquisition programs.  The 
framework is represented by Figure 2-1. 

                                                 
9 DoD Instruction 5000.2. “Operation of the Defense Acquisition System.”  May 12, 
2003. 

IEEE 12207 
An Institute of Electrical and 
Electronics Engineers 
standard that establishes a 
common framework for the 
software life cycle process.   

This officially replaced MIL-
STD-498 for the development 
of DoD software systems in 
August 1998. 

 
 

Cost: 
The expenditure of something, 
such as time or labor, necessary 
for the attainment of a goal. 

 
Schedule: 
A plan for performing work or 
achieving an objective, 
specifying the order and allotted 
time for each part. 

Researchers have already cast much 
darkness on the subject and if they 
continue their investigations, we shall 
soon know nothing at all about it. 

                                  Mark Twain 

http://en.wikipedia.org/wiki/MIL-STD-498�
http://en.wikipedia.org/wiki/MIL-STD-498�
http://en.wikipedia.org/wiki/United_States_Department_of_Defense�
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The Acquisition Management Framework is separated into three activities:  
Pre-Systems Acquisition, Systems Acquisition, and Sustainment.  These 
activities are divided into five phases:  Concept Refinement, Technology 
Development, System Development & Demonstration, Production & 
Deployment, and Operations & Support.  The Phases in System Acquisition 
and Sustainment are further divided into six efforts:  System Integration, 
System Demonstration, Low-Rate Initial Production (LRIP) or limited 
deployment (if applicable), Full-Rate Production (FRP) and Deployment, 
Sustainment, and Disposal.   
 
The framework figure indicates key points in the process known as 
milestones.  A Milestone is the point at which a recommendation is made 
and approval sought regarding starting or continuing an acquisition program 
(i.e., proceeding to the next phase).  The milestones established by DoDI 
5000.2 are: Milestone A approves entry into the Technology Development 
phase; Milestone B approves entry into the System Development and 
Demonstration phase; and Milestone C approves entry into the Production 
and Deployment phase. Also of note are the Concept Decision that approves 
entry into the Concept Refinement phase; the Design Readiness Review that 
ends the System Integration effort and continues the System Development 
and Demonstration phase into the System Demonstration effort; and the Full 
Rate Production Decision Review at the end of the Low Rate Initial 
Production effort of the Production & Deployment phase that authorizes Full 
Rate Production and approves deployment of the system to the field or fleet.   
 

2.1.2 User needs and technology 
opportunities 
The user needs and technology opportunities effort is divided into two 
primary areas, User needs activities and technology assessment.  User need 
activities consist of determining the desired capabilities or requirements of 
the system and is governed by the Initial Capabilities Document (ICD).   The 
user needs activities also involve preparation of the Capability Description 
Document (CDD) and the Capability Production Document (CPD).  
Technology assessment examines multiple concepts and materiel approaches 
to optimize the way the Department of Defense provides these capabilities. 
The examination includes robust analyses that consider affordability, 
technology maturity, and responsiveness. 
  

2.1.3 Pre-systems acquisition 
Pre-systems acquisition activities involve development of user needs, 
science and technology efforts, and concept refinement work specific to the 
development of a materiel solution to an identified, validated need.  The 
activities are governed by the ICD, the CDD and the CPD.   The ICD, the 
CDD and the CPD are created by the program acquisition office in 
conjunction with “representatives from multiple DoD communities” that 
assist in formulating broad, time-phased, operational goals, and describing 
requisite capabilities. 

2.1.3.1 Concept refinement phase 
Concept refinement begins with the Concept Decision.  Entrance into the 
Concept refinement phase depends upon an approved Initial Capabilities 

A detailed explanation of the 
Defense Acquisition System and 

the Acquisition Management 
Framework can be found in 

Appendix H. 
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Document and an approved plan for conducting an Analysis of Alternatives 
(AoA) for the selected concept.  The AoA is created by the program 
acquisition office.  The phase ends when the Milestone Decision Authority 
approves the preferred solution resulting from the Analysis of Alternatives 
and approves the associated Technology Development Strategy.   

2.1.3.2 Milestone A 
At this milestone, the Milestone Decision Authority approves the 
Technology Development Strategy and sets criteria for the Technology 
Development phase.  If there is no predetermined concept and evaluation of 
multiple concepts is needed, the Milestone Decision Authority will approve 
a Concept Exploration effort.  If there is an acceptable concept without 
defined system architecture, the Milestone Decision Authority will approve a 
Component Advanced Development effort.     

2.1.3.3 Technology development phase 
During the Technology Development phase, the Capability Development 
Document is created.  This document builds upon the Interface Control 
Document and provides the necessary details to design the proposed system.  
The project exits the phase when an affordable increment of useful capability 
to the military has been identified, demonstrated in the relevant environment, 
and can be developed within a short timeframe (usually less than five years).   

2.1.3.4 Milestone B 
The purpose of Milestone B is to authorize entry into the System 
Development & Demonstration phase.  Milestone B approval can lead to 
either System Integration or System Demonstration depending upon the 
maturity of the technology.     

2.1.4 Systems acquisition 
The activity is divided into two phases: System Development & 
Demonstration and Production & Deployment. 

2.1.4.1 System development & demonstration  
The objective of the System Development and Demonstration phase is to 
demonstrate an affordable, supportable, interoperable, and producible system 
in its intended environment.  The phase has two major efforts:  System 
Integration and System Demonstration.  System Integration requires a 
technical solution for the system.  At this point, the subsystems are 
integrated, the detailed design is completed, and efforts are made to reduce 
system-level risks.  The effort is guided by an approved Capability 
Development Document which includes a minimum set of Key Performance 
Parameters (KPPs).  The program exits System Integration when the system 
has been demonstrated using prototype articles or Engineering Design 
Models and upon completion of a Design Readiness Review. Completion of 
this phase is dependent upon a decision by the Milestone Decision Authority 
to commit to the program at Milestone C or to end the effort. 

2.1.4.2 Milestone C 
The purpose of Milestone C is to authorize entry into: Low Rate Initial 
Production, production or procurement (for systems that do not require Low 
Rate Initial Production), or limited deployment for Major Automated 



13 
 

Information Systems or software-intensive systems with no production 
components.   A favorable Milestone C decision commits the DoD to 
production of the system.  At Milestone C, the Milestone Decision Authority 
approves:  the updated acquisition strategy, updated development 
Acquisition Program Baseline, exit criteria for Low Rate Initial Production 
or limited deployment, and the Acquisition Decision Memorandum 
(ADM10

2.1.4.3 Production & deployment 

).   

The purpose of the Production and Deployment phase is to achieve an 
operational capability that satisfies mission needs.  The phase consists of the 
Low Rate Initial Production effort, the Full-Rate Production decision review, 
and the Full-Rate Production & Deployment effort.  The decision to continue 
to full-rate production, or limited deployment for Major Automated 
Information Systems or software-intensive systems, requires completion of 
Initial Operational Test and Evaluation and approval of the Milestone 
Decision Authority. 

2.1.5 Sustainment 
The Sustainment activity has one phase, Operations & Support, consisting of 
two major efforts: Sustainment and Disposal.  The objective of this activity 
is to provide cost-effective support for the operational system over its total 
life cycle.  Operations and Support begins when the first systems are 
deployed.  Since deployment begins in the latter portions of the Production 
& Deployment phase, these two activities overlap.  Later, when a system has 
reached the end of its useful life, it needs to be disposed of appropriately. 

2.2 Waterfall model 
The waterfall model is the fundamental basis of most software development 
approaches and serves well as a basis for describing the typical software 
development processes.  Note the word typical allows us to establish steps in 
a process that are not strictly defined or dictated by DoD standards or 
specifications.  This section outlines steps that are part of the normal 
engineering approach to solving problems and are followed in the 
generalized waterfall development approach common to system 
development (as shown in Figure 2-2).  The products of each step of the 
development process are indicated.  These products are key elements in 
supporting the product release and a means of measuring the current position 
in the process.  

                                                 
10 The Acquisition Decision Memorandum (ADM) is not limited to Milestone C but 
can be submitted during many points of the acquisition phase. 
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An alternate (and perhaps more revealing) way of presenting the steps or 
phases of the software development process is by means of the Software V-
chart shown in Figure 2-3.  The V-chart presents the traditional waterfall 
process in more detail showing the steps and their relationship to each other.  

Each step concludes with a formal review to determine the readiness to 
proceed to the next process step.  The requirements activity concludes with a 
decision point at the Software Requirements Review (SRR) to determine 
readiness to proceed to full-scale development and begin the high-level or 
architectural design.  The architectural design is evaluated at the Preliminary 
Design Review (PDR) to determine readiness to proceed to the software 
detail design.  The detail design is reviewed at the Critical Design Review 
(CDR) to determine readiness to move to the construction phase where the 
software product is implemented and tested.  Once the construction of the 
software product is complete (computer software units [CSUs]), assembled 
into Computer Software Components (CSCs), and components are 
assembled into a product (CSCI), the software product is formally reviewed 
and accepted at the Software Acceptance Review (SAR) and delivered to the 
system integration activity.  

 
 

Figure 2-3: Software product activities relationship to  
integration and test activities 

 
 

Figure 2-2: Waterfall development cycle 
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This is probably the best point to introduce two terms that cause continuing 
confusion – verification and validation (V&V).  Most people can’t tell the 
difference between V&V.  Verification refers to a set of activities that ensure 
a product is implemented according to its specification, or design baseline.  
Validation refers to a set of activities that ensures the product satisfies its 
performance requirements established by the stakeholder.  Boehm11

Verification: “Are we building the product right?” 

 
simplified the definitions: 

Validation: “Are we building the right product?” 

The verification arrows in Figure 2-3 involve testing to ensure performance 
meets the software requirements.  The validation arrows at the top of the V 
assure the product meets stakeholder requirements. 

System integration is often beyond the scope of the software development 
estimate and is included in the system (hardware and software) estimate.  
However, the software maintenance estimate is typically part of the software 
estimate. 

Developing the software requirements is the first step in software 
development.  (Note that this critical first step is beyond the scope of the 
software cost and schedule analysis and is included to define the source of 
software requirements.) The system requirements are developed and a 
portion (often large) of those requirements is allocated to software prior to 
the System Design Review (SDR).  The SDR decision reviews the system 
requirements and the allocation of those requirements to hardware, software, 
and user interaction.  The SDR also determines the readiness to move to the 
next step – the development of the software product.  

The steps in the software waterfall process are: 
• Planning (software requirements analysis). 
• Requirements (CSCI requirements analysis and specification). 
• Full scale development. 

o Preliminary design (architecture design to PDR). 
o Detail design (PDR to CDR). 
o Construction (code and unit [CSU] development and test). 
o Construction (component [CSC] integration and test). 
o Construction (configuration item [CSCI] integration and test). 

• System integration and test. 
• Maintenance. 
 
The following paragraphs contain a more detailed description of the steps in 
the software waterfall development process shown previously in Figure 2-2.  
These activities are important and are present in every development 
approach, whether in the waterfall approach or not.  The waterfall approach 
has its critics, but, as will be seen, the process appears in one form or another 
in almost every development approach. 

2.2.1 Requirements analysis and specification 
The second step in the system development process (the first step in the 
software portion of the process) is to analyze the functions the software 
subsystem(s) will perform and to allocate those functions to individual 
CSCIs.  The software development team completes the engineering 

                                                 
11 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc. Englewood 
Cliffs, NJ: 1981. 

The most likely way for the world 
to be destroyed, most experts 
argue, is by accident.  That’s 
where we come in; we’re computer 
professionals.  We cause accidents. 

Nathaniel Borenstein 
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requirements for each CSCI and the required interfaces.  The requirements 
analysis and specification culminate in a SRR.  A complete list of 
qualification and test requirements are also developed in this activity.  

2.2.2 Full-Scale Development 
Full-scale software development in the estimator’s world is represented by 
the Figure 2-2 design and construction activities.  The completed CSCI is 
reviewed during the SAR at the conclusion of CSCI integration and test.  
Successful conclusion of the SAR results in acceptance of the software 
product by the customer or the system integration activity.  The individual 
phases of the full-scale development are described in the following 
paragraphs. 

The preliminary design creates the software product architecture.  The 
architecture defines each of the CSCs, allocates requirements to each CSC, 
and defines the interfaces between the CSCs and the external system.  The 
activity culminates in a PDR to determine the readiness for advancement to 
the detail design.   

The detail design allocates requirements from each CSC and establishes the 
design requirements for each CSU.  The activity produces a design for each 
CSU as well as internal interfaces between CSUs and interfaces to the higher 
level CSCI.  Formal qualification test planning continues and specific test 
cases are developed.  The activity concludes with a formal CDR which 
reviews the design, the test plans, and critical design issues that have arisen 
during the activity.  Successful completion of the CDR is normally 
considered the “go-ahead” decision for software production. 

Software production “turns the corner” from design activities to integration 
and testing act ivies as shown in Figure 2-3.  During the code and unit test 
activity, Software Product Specifications (SPSs) are drafted and the 
production code is written for each CSU.  The deliverable source code is 
thoroughly tested since this is the one level that allows direct access to the 
code.  When the unit testing is successfully completed, the CSU is made 
available for integration with the parent CSC.  

Individual CSUs are then assembled into CSCs and tested at the component 
level.  Testing at this level is comprehensive and detailed because this is the 
last opportunity to stress test the components (i.e., arrays out of bounds, 
numbers out of range or negative when not expected, invalid inputs, and so 
forth).  When testing shows the CSC functions are performing correctly, the 
CSCs are integrated into the product-level CSCI. 

CSC integration is the final activity in the full-scale CSCI development.  
Integration testing verifies performance of the entire software product 
(CSCI) against the formal software requirements approved at the SRR.  The 
test is normally preceded by one or more Test Readiness Reviews (TRRs) to 
determine if the CSCI is ready for the Formal Qualification Test (FQT).  A 
Formal Qualification Audit (FQA) verifies that all requirements have been 
incorporated into the design and each requirement has been adequately 
tested.   

At the successful conclusion of the CSCI acceptance test, a formal SAR is 
conducted prior to acceptance by the customer or the next higher level 
system integration activity. 

As soon as we started 
programming, we found to our 
surprise that it wasn’t as easy to 
get programs right as we had 
thought.  Debugging had to be 
discovered.  I can remember the 
exact instant when I realized that 
a large part of my life from then 
on was going to be spent in 
finding mistakes in my own 
programs. 

                  Maurice Wilkes 
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2.2.3 System Integration and Test 
The final step in the system development process is system integration and 
test.  At this point in the development cycle, the software and hardware 
configuration items are integrated into the final configuration.  This includes 
user (manuals) operations to determine if the system satisfies the system 
level requirements before deployment in the operational phase.  A full 
description of system integration and testing is beyond 
the scope of this guidebook. 

2.3 Software development 
products 
It is important to review some software product 
definitions that are used throughout the guidebook.  
Important terms describing the product are graphically 
presented in Figure 2-4.  The software product can be a 
standalone system or a subsystem contained within a 
larger system structure.  In any case, the product is the 
root of the development structure (project).  The 
product consists of one or more Computer Software 
Configuration Items (CSCIs).   The CSCI relates 
directly to the allocated software requirements.  The 
CSCI is the component normally used in the detailed 
software development cost and schedule estimates. 

The CSCI is generally constructed from one or more Computer Software 
Components (CSCs) that are defined in the architecture design activity.  

The CSC is generally made from a set of Computer Software Units (CSUs) 
that are defined in the architectural and detail design activities.  The CSU is 
often a simple procedure or subroutine.  

There are three documents that stand out as important in establishing the 
development activities and schedule.  These documents are: the Software 
Development Plan (SDP), the Software Requirements Specification (SRS), 
and the ICD.  These three documents generally constitute the definition of a 
CSCI and are described in subsequent paragraphs.  

2.3.1 Software Development Plan  
The SDP defines the dates, milestones, and deliverables that will drive the 
development project.  It defines who is responsible for doing what, and by 
when.  It also describes how the important development activities, such as 
reviews and testing, will be performed.  The activities, deliverables, and 
reviews are described for each step of the development process.  The major 
sections of the SDP are described in the following subsections.  

2.3.1.1 Project organization 
This section of the SDP lists the performing organizations in the project and 
describes their responsibilities.  It includes how the project will be managed 
and controlled, the processes and software development practices or 
standards to be followed by the development team, and the procedures that 
will be used for tracking and reporting progress.  
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Figure 2-4: Computer software architecture 
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2.3.1.2 Schedule 
The development schedule contains many more tasks than the preliminary 
timeline presented in the contract Statement of Work (SOW). The SOW 
enables the project manager to monitor and control progress as the 
development proceeds.  The software developer and the project manager, 
and often the government customer, develop and agree upon the SDP.  The 
schedule is one of the most critical elements of the SDP and one of the most 
common factors in project failure.  A good estimate is a requirement for 
project success. 

The project plan schedule needs to contain items directly connected to 
software quality besides the overall project tasks and milestones, such as 
design tasks, status meetings, functional specification reviews, design 
reviews, and coding reviews.  

2.3.1.3 Software Design Document 
The Software Design Document (SDD) describes the complete design of a 
CSCI.  It describes the CSCI as composed of CSCs and Computer Software 
Units (CSUs).  

The SDD describes the allocation of requirements from a CSCI to its CSCs 
and CSUs.  Prior to the PDR, the SDD is entered into the Developmental 
Configuration for the CSCI.  Upon completion of the Physical Configuration 
Audit (PCA), the SDD, as part of the SPS, is entered into the Product 
Baseline for the CSCI.  

The SDD is used by the developer for three primary purposes, namely:  

• Present the preliminary design at the Preliminary Design Review(s). 

• Present the detailed design at the Critical Design Review(s). 

• Use the design information as the basis for coding each CSU. 

The SDD is used by the government to assess the preliminary and detailed 
design of a CSCI. 

2.3.1.4 Quality Plan 
The Quality Plan section of the SDP contains an overview of the Quality 
Assurance and Test Plan, which verifies that the product performs in 
accordance with the requirements specification and meets all pertinent 
customer requirements.  

The Test Plan is a part of the Quality Plan section of the Software 
Development Project Plan.  It describes the:  

• Overall test policy and objectives. 
• Responsibility for test case generation. 
• Scope of the testing activity: operating systems, computers, 

features, functions. 
• Rules for software acceptance.  

A schedule with milestones and the names of people and resources 
committed to achieving them should be part of this plan.  
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2.3.2 Software Requirements Specification 
The SRS is produced at the conclusion of the requirements analysis task.  
The SRS is the key document that defines the product to be produced during 
the full-scale development following the SRR.  Software functions and 
performance are allocated to the CSCI as part of the systems engineering 
activity.  The SRS contains a refinement of the requirements allocation 
which includes a complete information description, a detailed functional 
description, a representation of system behavior, performance requirements 
and design constraints, and software validation criteria. 

2.3.3 Interface Control Document 
The SRS is accompanied by an interface description in the form of an ICD or 
an Interface Requirements Specification.  The interface description defines, 
in detail, the interface between the CSCI and the higher-layer system 
hardware and software.
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Section 3   
Levels of Detail in Software 

Estimates 
Software estimates generally fall into one of two distinct categories: system-
level and component-level.  A system-level estimate is the best approach 
when few or none of the requirements are allocated to CSCIs. On the other 
hand, the component-level estimate is used to perform detailed estimates of 
software components at the CSCI level. 

A major factor in determining the estimate type is the program acquisition 
state or phase.  Early in the program, generally before or at Milestone A, a 
system-level estimate should be employed.  Currently, there is a general lack 
of detailed understanding of the requirements, the system has not yet been 
decomposed into CSCIs, and only a “ballpark” estimate is required.  
Programs after Milestone B generally use component estimates.  Most 
programs transition from a system estimate to a component estimate as the 
architecture and the development environment become more fully defined.   

A system-level estimate is normally conducted at a time in the system 
development process before the software subsystem has been decomposed 
into CSCIs.  At that time, the software size is only loosely defined and the 
software developer may be unknown. This estimate type is generally used 
for rough planning and resource allocation purposes.  System-level estimates 
produce development effort estimates only and should not be used to predict 
a schedule. 

The component-level estimate is a detailed or CSCI-level estimate.  There 
are two criteria that must be satisfied in order for a component-level estimate 
to be valid:  The testable project requirements must be defined and allocated 
to one or more CSCIs (as described previously in Figure 2-1), and the CSCI 
interfaces must be defined.   

The software estimating tools available in the marketplace are designed for 
component-level estimates and should not be used at the system level.  Cost 
estimates obtained for software elements (defined only at the system level 
using these tools) will be too high, and the schedule estimates for the system-
level elements will be too long. 

An accurate (or realistic) component estimate requires knowledge of four 
controlling factors: 

• Effective size (Section 6). 
• Basic developer capability (Section 8). 
• Environment constraints imposed by the development requirements 

(Section 9). 
• Product characteristics, including complexity (Section 10). 

3.1 Estimate foundation factors 
Software development cost is largely determined by three factors: 

• How big is the development?  

• How efficient is the developer? 

Damn your estimate! Give me two 
years and a dozen good engineers, 
and I’ll deliver your system. 

Hank Beers, experienced software 
manager, 1985 
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• What are the development constraints? 

Size is the measure in lines of code, function points, object points, or some 
other units, of how large the development effort will be.  Cost and schedule 
are directly related to the size of the product.   

Efficiency is a characteristic of the developer.  Developer skill and 
experience lead to higher productivity, lower costs, and shorter schedules.   

Every project has constraints.  The development environment provides 
limitations in terms of development system and product requirements.  
Product complexity limits the size of the development team which, in turn, 
controls the schedule.  Constraints are largely determined by the product (or 
application) type.  For example, constraints applied to accounting systems 
are less stringent than space system applications.  The customer introduces 
additional constraints related to reliability, equipment volatility, and security, 
as well as memory and processing constraints.  

Development productivity is determined by a combination of developer 
efficiency and the constraints placed on the development. 

Productivity is dealt with in the system-level and component-level models in 
different ways.  The estimating approaches and their differences are 
described in the following sections. 

3.2 System-level estimating model 
The system-level (or first-order) model is the most rudimentary estimating 
model class and is probably the model that will be used most often, 
especially in early cost and schedule projections.  This model is, simply, a 
productivity constant multiplied by the software product effective size.  The 
result yields a development effort and cost.  The productivity constant is 
defined as the development organization production capability in terms of 
arbitrary production units. The production units (size) can be effective 
source lines of code (ESLOC), function points, object points, use cases, and 
a host of other units depending on one’s experience and estimate 
requirements.  For the purpose of this discussion, we will use effective 
source lines of code (ESLOC) as the production unit measure and person 
months per ESLOC as the productivity measure.  The first-order estimating 
model can be summarized as:  

ekd SCE =      (3-1) 

where    dE  is the development effort in person-months (PM), 

 kC  is a productivity factor (PM/ESLOC), and 

 eS  is the number of effective source lines of code (ESLOC). 
 
The effective size can be defined in several ways which are discussed in 
Sections 4 and 6 in greater detail.  For the purpose of this discussion, we fall 
back to an effective size definition that has been in use since the late 1970s 
and produces reasonable effective size values for rough estimates.  The 
simple size value is given by 
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 reusednewe SSSS 2.075.0 mod ++=   (3-2) 

where Se is the software effective size (ESLOC), 
Snew is the number of new SLOC being created for the product, 
Smod is the number of pre-existing SLOC being modified for the 

product development, and 
Sreused is the number of pre-existing, unmodified SLOC used in the 

product (requires functionality allocation and testing). 

The productivity factor is commonly determined by the product type, 
historic developer capability, or both, and is derived from past development 
projects.  This factor includes all the software related effort needed to 
produce software beginning with architecture design through (and including) 
final qualification testing and is divided by the effective size.   Equation 3-1 
is reasonably simple and is widely used to produce high-level, rough 
estimates. 

By collecting several data points from a specific organization developing a 
specific product type, an average productivity factor can be computed.  This 
value is superior to the factors tabulated in this section for specific projects 
by a contractor.  Collecting several data points of different sizes will produce 
a size-sensitive productivity relationship.  Table 3-1 shows some typical 
productivity values for various types of software application types. 

 
The values contained in Table 3-1 have been developed from a wide range of 
software developers and environments.  The software types in the table may 
not correlate exactly with the product type you are estimating, so some 
subjectivity is required in selecting the appropriate type to use for your 
estimate.  The productivity factor given for each type is the mean of the data 
collected for that software type.  Also, consider that when the types were 
defined there was a wide dispersion of productivity values for each size and 
type.  Some data is conservative, but some is quite aggressive; in other 

Table 3-1: Typical productivity factors (person-months per KESLOC) by size and software type 

Software Type D 10 
KESLOC 

20 
KESLOC 

50 
KESLOC 

100 
KESLOC 

250 
KESLOC  

Avionics 8 12.6 14.5 17.4 20.0 24.0 

Business 15 2.1 2.4 2.9 3.3 4.0 

Command & control 10 6.3 7.2 8.7 10.0 12.0 

Embedded 8 9.0 10.4 12.4 14.3 17.2 

Internet (public) 12 2.1 2.4 2.9 3.3 4.0 

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0 

Microcode 4-8 12.6 14.5 17.4 20.0 24.0 

Process control 12 4.2 4.8 5.8 6.7 8.0 

Real-time 8 12.6 14.5 17.4 20.0 24.0 

Scientific systems/ 
Engineering research 12 2.5 2.9 3.5 4.0 4.8 

Shrink wrapped/ 
Packaged  12-15 2.1 2.4 2.9 3.3 4.0 

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0 

Telecommunication 10 6.3 7.2 8.7 10.0 12.0 

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures 
for Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five 
Core Metrics, 2003 
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words, data is often collected in a way to increase the apparent productivity 
factor.  For example, some costs for development activities may have been 
reallocated from development to test or to system engineering.  The mean 
value is taken from a skewed distribution that, in most cases, will make the 
estimate somewhat optimistic.  Be aware of the data! 

The system complexity (D) column in Table 3-1 shows a relationship 
between the application type and the typical software complexity.  
Complexity is defined as the degree to which systems design or 
implementation is difficult to understand and verify.  System complexity 
values have a typical range, in practice, between 4 and 15, with 4 being the 
most complex.  A comprehensive discussion of software complexity is 
contained in Section 10.1.  It is interesting to note the productivity rate 
achieved for each software type tends to group around the associated 
complexity value.   

Issues arise when the effective project size is less than approximately 20 
KESLOC.  First, the data from which the tables are generated have a wide 
variance; that is, the productivity values for those projects are highly 
dependent on individual performance.  The high variation adds risk to the 
tabulated values.  This is explained in more detail in Section 4. 

Second, when tasks are 20 KESLOC or less, it is highly likely that the 
software task will be developed as a component (CSCI).  At the component 
level, environment and personnel effects will be factored into the 
productivity value.  The component-level estimating approach is discussed in 
Section 5. 

The ideal CSCI size is reputed to be about 25-30 KESLOC, resulting in a 
development team of approximately 15 people, in a normal environment.  
This is because the ability of the development personnel to communicate and 
work together is important in small projects.   

The 100 KESLOC productivity rate listed in Table 3-1 is close to the rate 
expected for medium-size projects but the size is on the high side for a 
single-CSCI project.   

Columns 3 and 4 of the table are highlighted to emphasize the increased 
productivity normally present in small development teams.   The data in 
Table 3-1 for project sizes of 50 KESLOC or greater is more stable.  It is 
recommended that values below the 50 KESLOC column of the productivity 
factor table be used with care because of the large variance in the underlying 
data.  

It stands to reason that military software development programs result in 
lower productivities.  The high levels of reliability and security inherent in 
military applications necessitate more careful analysis and design as well as 
more exhaustive testing than the average commercial or web application.   

There are no useful methods to project a development schedule at the system 
level unless the system can be developed as a single CSCI.  

3.3 Component-level estimating model 
The component-level estimate requires an allocation of the system 
requirements into CSCIs.  The CSCIs can be further allocated into subunits 
to achieve proper sizing for development.  Some components may be reused 
from other previously developed subunits or include the use of a COTS 
product. 
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The component-level estimate should not be used for software development 
task estimates with “pieces” larger than 200 KESLOC.  This is due to the 
impracticality of a development team working together effectively, given the 
team size necessary to implement a CSCI of this magnitude. 

The 250 KESLOC project is beyond the upper limit for 
a single CSCI project.  The Aerospace Corporation 
report on DoD software project development12

The component-level estimate addresses some of the 
weakness of the system-level estimate.  The first 
system-level weakness is its inability to adjust the 
productivity factor to account for variations between 
projects and differences in development environments.  
For example, contractor A may have a more efficient 
process than contractor B; however, contractor A may be using a 
development team with less experience than assumed in the historic 
productivity factor.  Different constraints may be present in the current 
development than were present in previous projects.  In addition, using a 
fixed (or calibrated) productivity factor limits the model’s application across 
a wide variety of environments. 

 shows 
that no CSCIs larger than 200 KESLOC in their 
database have ever been successfully completed, as 
illustrated in Figure 3-1.  The team for a project of this 
size approaches 100 people working and 
communicating as a team.  As a project, the 250 
KESLOC total size needs to be decomposed into a 
group of CSCIs that can be independently managed and 
developed.   

A second major weakness is the inability to accurately plan a development 
schedule for the project. The component-level estimate, unlike the system-
level estimate, can focus on the development team and environment to 
produce a schedule estimate and staffing profile, as well as a development 
effort estimate. 

The component-level estimating model compensates for the system model’s 
narrow applicability by incorporating a set of environment factors to adjust 
the productivity factor to account for a wider range of variables such as team 
capability and experience, requirements volatility, and product constraints.  
The form of the component-level estimating model is 

  

                                                 
12 Long, L., K. Bell, J. Gayek, and R. Larson. “Software Cost and Productivity 
Model.” Aerospace Report No. ATR-2004(8311)-1. Aerospace Corporation. El 
Segundo, CA: 20 Feb 2004. 
     

 
Figure 3-1: Achievable software development effective size and 

schedule 
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where  Ed is the full-scale development effort (SRR through FQT), 

if  is the ith environment factor,  
n is the number of environment factors, and   
β is an “entropy13

The number of environment factors varies across estimating models, and is 
typically between 15 (COCOMO) and 32 (Jensen).  Models using lower 
numbers of factors ignore management impacts and take a higher-level view 
of other environment factor impacts on productivity.   

” factor that measures the communication 
efficiency of the development team. 

Environment factors can be grouped into four distinct types: personnel, 
management, environment, and product. A table of common environment 
factors is shown in Appendix I-11. 

The component model compensates for the productivity decrease in larger 
projects by incorporating an entropy factor (β) to account for the change.  
The entropy effect demonstrates the impact of the large number of 
communications paths that are present in large development teams.  The 
development team theoretically has ( ) 2/1−nn  communication paths, where 
n is the number of development personnel.  An entropy factor value of 1.0 
represents no productivity change with size.  An entropy value of less than 
1.0 shows a productivity increase with size, and a value greater than 1.0 
represents a productivity decrease with size.  Entropy values of less than 1.0 
are inconsistent with historical software data14

 If the system can be built as a single CSCI, the schedule can be 
approximated by an equation of the form 

.  Most of the widely used 
models in the 1980s (COCOMO embedded mode, PRICE®-S, Revised 
Intermediate COCOMO, Seer and SLIM®) used entropy values of 
approximately 1.2 for DoD projects.  The 1.2 value applies to development 
tasks using more than five development personnel.  A lone programmer task 
has a corresponding entropy factor of 1.0 since there is no communication 
issue. 

  

                                                 
13 Entropy is defined as “An index of the degree in which the total energy of a 
thermodynamic system is uniformly distributed and is thus unavailable for 
conversion into work.”  Entropy in software development equates to the energy 
expended in the process which does not contribute to the software product.  For 
example, reverse engineering of the existing software product is necessary, but 
produces no product.  Communication faults create errors, rework, and consumes 
resources, but does not contribute to the product. 
14 This is a good place to point out a major difference between software and almost 
any other manufactured product.  In other estimating disciplines, a large number of 
product replications improve productivity through an ability to spread costs over a 
large sample and reduce learning curve effects.  The software product is but a single 
production item which becomes more complex to manage and develop as effective 
size increases.   
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3* dd EXT = months    (3-4) 

where Td  is the development time (months),  

X is a constant between 2.9 and 3.6, depending on the software 
complexity, and 

Ed is the development effort (PM). 

3.4 Estimating process 
To summarize the software estimating approaches, there are two 
fundamental estimating processes for software development: system level, 
and component level.  Common to both processes are the effective size and 
complexity of the system under development  

The system process is generally used in the early phases of development 
when details, such as an architectural design, are not available.  The system 
may be only a concept at this stage or may have functional requirements, but 
in any case, the system does not have the components defined at this point.  
The information available probably includes a size estimate and an 
application type.  From the application type we can derive an approximate 
value for the system complexity.  The estimate developed under these 
conditions is only a coarse approximation.  Adding significant digits to the 
results does not improve accuracy or reality.   

Figure 3-2 shows the relationship between system-level and component-level 
estimates.  The system-level estimating process, based on size and 
productivity information, is described in Section 4. 

 
The component-level process is generally used after the software 
components are defined with an SRS to describe the component functionality 
and an ICD to define the component interface to the larger system.  These 
documents describe the scope of the components and make it possible to 
estimate the effort, schedule and staffing characteristics of the actual 
development.  At this point, the developer (or a generic developer), with the 
capabilities to construct the software component has been defined.  The 
details of the component-level estimating process are described in Section 5.

 
Figure 3-2: Software elements and their relationship to the estimate types 

Application 
Type

Effective 
Size Complexity Developer 

Capability
Development 
Environment

Product 
Characteristics

System 
Level 

Estimate

Component 
Level 

Estimate

The validity of an input 
data value is inversely 
proportional to the number 
of trailing zeros in its 
representation. 
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Section 4 
System-Level Estimating Process 

The system-level estimating process is generally used in the early phases of 
development, where details such as an architectural design are not available.  
The system may only be a concept or may have functional requirements, but 
in any case, does not have the components defined.  The information 
available probably includes a size estimate and an application type, as shown 
in Table 4-1.  From the application type, we can derive an approximate value 
for the system complexity.  The estimate developed under these conditions is 
only a coarse approximation.  Adding significant digits to the results does 
not improve accuracy or reflect reality.  Also, note that the number of 
trailing zeros is a likely indication of the uncertainty of the number. 

The system-level estimating model is defined as:  

ekd SCE =      (4-1)  

where  dE  is the development effort in Person-Months (PM), 

kC  is a productivity factor that depends upon the product type and 
the development environment (PM/ESLOC), and 

 eS  is the number of ESLOC (size).   

The development effort can be in Person-Hours, PH, or any other unit 
corresponding to a measure of productivity. 

If – and only if – the system can be built as a single CSCI, the schedule can 
be approximated by an equation of the form: 

3* dd EXT = months    (4-2) 

where Td  is the development time (months),  

X is a constant between 2.9 and 3.6 depending upon the software 
complexity, and 

Ed is the development effort (PM). 

For example, if a software subsystem is projected to be 300,000 ESLOC and 
the associated productivity factor is 100 ESLOC per person month, the 
development effort estimate will be 3,000 PM.  The corresponding 
development time, calculated using most software estimating tools, is 
approximately 50 months and 60 developers, or 

60 developers = 3,000 PM / 50 MO. 

If the subsystem is developed as five equal CSCIs, the development time is 
approximately 29 months plus some subsystem integration time. In any case, 
the estimated development times for the two options diverge greatly and 
demonstrate the weakness of the development schedule estimate at the 
system level. Even without using estimating tools, it is logical that the 
required schedule for the two options will be widely disparate. 

Equation (4-1) states that two important pieces of information – productivity 
and size – are necessary to conduct a software cost analysis at the system 

 
Table 4-1: System Concept Information 

Application Type Baseline Size 

System Manager 219,000 

Control Data Links 320,000 

Sensors 157,000 
Operating System 
(Application Program 
Interfaces) 

53,000 

System Total 749,000 

 

We learn from experience that we don’t 
learn from experience. 

D.H. Lawrence 
 

A CSCI with an effective size 
greater than 200,000 source 
lines will never be completed 
successfully.  Also, if the 
required development 
schedule exceeds five years, 
the CSCI will never be 
delivered. 

Results of Aerospace Corp 
data analysis 
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level.  There is a straightforward procedure performing a complete system-
level cost analysis.  Briefly, the steps are: 

1. Construct a list of the software elements contained in the system.  These 
elements can be major subsystems, CSCIs, or both, depending upon the 
descriptive information available.  Most often, a system-level estimate is 
performed prior to, or slightly after, Milestone A. 

2. Determine the complexity of each system software elements (Section 
4.1).  As an alternative approach, use the productivity factor table (Table 
4-4 in Section 4.4) which contains typical complexity values for each of 
the 13 application categories. 

3. Determine the effective size for each element in the system software list.  
The element size information may be available in many forms including 
ESLOC, function points, use cases, object points, or other measures.  
The important point is that the form must ultimately be reducible to 
ESLOC to be usable by most estimating tools.  

a. Determine the baseline size estimate for each element (Section 
4.2.1 for source code estimates, Section 4.2.2 for function 
points). 

b. Calculate the projected size growth for each element taking 
into account the maturity of the project and the element 
complexity (Section 4.3). 

4. Choose a productivity factor for each software element (Section 4.4). 

5. Calculate the development cost for each element (Section 4.5). 

6. Validate the development cost estimate (Section 4.6). 

7. Allocate the development costs to the project phases (Section 4.7). 

The system-level cost estimating process described in this section is 
supported by a case study that demonstrates development of an estimate 
from inception through completion.  This example is contained in Appendix 
F.  

4.1 Product complexity 
A list of the system’s software elements may be available from the ICD or 
other design and architecture documents prior to Milestone A.  These 
documents may also contain other important estimating information such as 
planned size and complexity of the software elements.   

Complexity (apparent) is defined as the degree to which a system or 
component has a design or implementation that is difficult to understand and 
verify15

                                                 
15 Institute of Electrical and Electronics Engineers. IEEE Standard Computer 
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY: 
1990. 

.  The complexity number may be viewed as analogous to the amount 
of code the person can understand or maintain, thus the lower a number the 
more intricate or complex.  In more visible terms, complexity, or “D” (for 
difficulty), is a function of the internal logic, the number and intricacy of the 
interfaces, and the understandability of the architecture and code.  The first 
thing to understand about complexity is that it has nothing to do with 
software size. 
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Larry Putnam16

Stratification of the complexity data occurs around the 
system types.  Table 4-2 is a useful rough guide for 
determining the appropriate D value for specific software 
types.  The majority of estimating tools refer to D as 
complexity. 

 empirically noted that when his software 
database was plotted as K (total lifecycle effort in person 
years) vs. T3 (development time in years), the data stratified 
according to the complexity of the software system.   

4.2 Size estimating process 
Size is the most important effort (cost) and schedule driver 
in the software development estimate.  Size information 
early in a project is seldom, if ever, accurate.  Information 
presented in a Cost Analysis Requirements Description 
(CARD) is generally predicted during the concept 
development phase, prior to the start of full-scale development.  Size 
information is often presented as a single value leading to a point cost and 
schedule estimate; however, the estimate is more accurately expressed as a 
minimum (most optimistic) value, a most likely value, and a maximum 
(most pessimistic) value to give a more realistic picture of the information. 

The size values used in a software cost and schedule estimate are derived 
from a three-step process:   

1. Determine the baseline effective size value and the baseline size 
standard deviation.  If the system contains function points as part of the 
size specification, the function points must be converted into equivalent 
ESLOC as part of this step.  

2. Determine the maximum effective size growth.  The maximum growth 
value is determined from the developer capability, the maturity of the 
software product, the product complexity, and the anticipated reuse level 
of pre-existing source code. 

3. Determine the mean growth estimate.  This is used as the most likely 
size value in most cost and schedule estimates.   

4.2.1 Effective source lines of code (ESLOC) 
A SLOC is a measure of software size.  A simple, concise definition of a 
source line of code is:  any software statement that must be designed, 
documented, and tested.  The three criteria designed, documented, and 
tested, must be satisfied in each counted SLOC.   

ESLOC, as a measure of work, is a useful and necessary concept for defining 
“effective size” for effort (cost) calculations.  Development ESLOC are 
numerically identical to physical source lines when the total software 
product is being developed from scratch or as new source lines.  
Unfortunately, most software developments incorporate a combination of 
new source code, existing code modified to meet new requirements, and 
unmodified code or reusable software components.  A detailed description of 
the concept of work and effective size is contained in Section 6. 

                                                 
16 Putnam, L.H. “A General Empirical Solution to the Macro Software Sizing and 
Estimating Problem.” IEEE Transactions on Software Engineering. New York, NY: 
1978. 

Table 4-2: Stratification of complexity data 

D Description 

4 Development primarily using microcode. Signal processing 
systems with extremely complex interfaces and control logic. 

8 
New systems with significant interface and interaction 
requirements with larger system structure.  Operating systems 
and real-time processing with significant logical code. 

12 Application with significant logical complexity.  Some changes 
in the operating system, but little or no real-time processing. 

15 
New standalone systems developed on firm operating systems.  
Minimal interface with underlying operating system or other 
system parts. 

21 Software with low logical complexity using straightforward I/O 
and primarily internal data storage. 

28 Extremely simple software containing primarily straight-line 
code using only internal arrays for data storage. 
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4.2.2 Function point counting 
Function point analysis is a method for predicting the total size (and ONLY 
the total size – not the development effort or time) of a software system.  
Function points measure software size by quantifying the system 
functionality provided to the estimator and is based primarily on the system 
logical design.  It is difficult to use function points as a measure of size in 
modified systems except for new and isolatable functionality. (Functionality 
cannot be changed without modifying source code, but source code can be 
modified without affecting functionality ( the “zero function point” 
problem.).   

The overall objective of the function point sizing process is to determine an 
adjusted function point (AFP) count that represents the functional size of the 
software system.  There are several steps necessary to accomplish this task.  
They are: 

1. Determine the application boundary.  
2. Identify and rate transactional function types to determine their 

contribution to the unadjusted function point (UFP) count. 
3. Identify and rate data function types to determine their contribution to 

the unadjusted function point count. 
4. Determine the value adjustment factor (VAF) from the 14 General 

System Characteristics (GSCs). 
5. Multiply the UFP count by VAF to obtain the adjusted function point 

count (AFP). 
 
The function point counting process is explained in more detail and 
demonstrated in Section 6.7. 

4.3 Software size growth 
Some experts consider software code growth (Figure 4-1) to be the single 
most important factor in development cost and schedule overruns.  Code 
growth is caused by a number of factors:  requirements 
volatility, size projection errors, product functionality changes, 
and human errors.   

The maximum size growth factor is shown in Table 4-3.  The 
growth factor is determined by the complexity of the software 
product and from the maturity of the product at the point the 
estimate is being made.  The maturity, or M, value is measured 
on a 100-point scale where the concept-level maturity is zero 
and the end of development maturity (or Formal Qualification 
Test [FQT]) is 100 points.   

The maturity factor for each milestone is shown in the table.  
The factors project the maximum product size at the end of 
development. The highlighted row in Table 4-3 corresponds to 
the relative project maturity (M) of 52 at the start of Software 
Requirements Review (SRR). 

 
Figure 4-1: Effective size growth distribution 
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Table 4-4 shows the mean projected size growth as a function of project 
maturity and product complexity that corresponds to the maximum growth 
illustrated in Figure 4-1.   

Size growth data for complexity values less than eight is too limited to be of 
any value; hence, the information in Tables 4-3 and 4-4 present growth 
information for complexities in the range of eight to 15.  For components of 
higher complexity (D = 4), assume the growth value for D = 8. 

The cost and schedule projections are normally computed from the mean 
size growth value.  This is the value that applies most for a realistic estimate.  
The probability of the baseline size existing at the end of development is 
very small and the corresponding delivery schedule and development effort 
are unlikely (see Section 6.5 regarding size growth). 

4.4 Productivity factor 
There are two methods described in this guidebook to determine the 
productivity factor for software development.  Both yield reasonable –albeit 
different – values.  Remember, the results produced here are estimates.  
Without historic data that describes the characteristics of the product, the 
software development environment, and the developer capability, it is 
unlikely the productivity factors, here or anywhere else, are going to produce 
identical effort and schedule estimates.  At the system level, the product 
characteristics are likely to be known, but the developer is not typically 
identified at the time the system estimate is made. 

Table 4-3: Maximum software growth projections as a function of  
project maturity and product complexity. 

  Complexity 

Maturity M < 8 9 10 11 12 13 14 15 
Concept 0 2.70 2.53 2.36 2.19 2.01 1.84 1.67 1.50 

Source 15 2.47 2.32 2.17 2.03 1.88 1.73 1.59 1.44 

C/A 33 2.19 2.07 1.95 1.84 1.72 1.60 1.49 1.37 

SRR 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29 

PDR 67 1.66 1.60 1.54 1.48 1.42 1.35 1.29 1.23 

CDR 84 1.40 1.36 1.33 1.30 1.26 1.23 1.20 1.16 

FQT 100 1.15 1.14 1.14 1.13 1.12 1.11 1.11 1.10 

 

Table 4-4: Mean software growth projections as a function of  
project maturity and product complexity. 

  Complexity 

Maturity M < 8 9 10 11 12 13 14 15 
Concept 0 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 

Source 15 1.43 1.39 1.34 1.30 1.26 1.22 1.17 1.13 

C/A 33 1.35 1.31 1.28 1.24 1.21 1.18 1.14 1.11 

SRR 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09 

PDR 67 1.19 1.18 1.16 1.14 1.12 1.10 1.09 1.07 

CDR 84 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 

FQT 100 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 
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4.4.1 Productivity factor table 
A table of system types, shown in Table 4-5, is divided into 13 categories to 
provide meaningful productivity factors for these types of systems.  
Additional system types can be covered by selecting the given type using the 
closest approximation.  Table 4-5 assumes an average development 
organization operating in a normal environment.  Subjective adjustments can 
be made to the factors to compensate for application experience.  The 
complexity value D represents the value that is typical for that software type. 
Complexity is discussed in detail in Section 10.1. 

The utility of the system model can be effective early in the development 
process before the software system architecture is established and the 
software components are defined.  The model is also valuable where there is 
little or no knowledge of the developer or the developer’s environment 
available.  A reasonable “ballpark” estimate can be created quickly to 
support rough planning. 

4.4.2 ESC metrics 
The Air Force Electronic Systems Center (ESC) compiled a database17

                                                 
17 AFMC Electronic Systems Center. Cost Analysis: Software Factors and Estimating 
Relationships. ESCP 173-2B. Hanscom AFB, MA: 1994. 

 of 
military projects developed during the years 1970-1993.  The ESC 
categorization follows the reliability definitions posed by Boehm in Software 

Table 4-5:  Typical productivity factors (ESLOC per person month) by size and software type 

Software Type D 10 
KESLOC  

20 
KESLOC 

50 
KESLOC 

100 
KESLOC 

250 
KESLOC  

Avionics 8 79 69 57 50 42 

Business 15 475 414 345 300 250 

Command & control 10 158 138 115 100 83 

Embedded 8 111 97 80 70 58 

Internet (public) 12 475 414 345 300 250 

Internet (internal) 15 951 828 689 600 500 

Microcode 4-8 79 69 57 50 42 

Process control 12 238 207 172 150 125 

Real-time 8 79 69 57 50 42 

Scientific systems/ 
Engineering research 12 396 345 287 250 208 

Shrink wrapped/ 
Packaged  

12-
15 

475 414 345 300 250 

Systems/ Drivers 10 158 138 115 100 83 

Telecommunication 10 158 138 115 100 83 

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures for 
Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five Core 
Metrics, 2003. 
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Engineering Economics; that is, grouping reliability according to the 
following categories18

 

 shown in Table 4-6. 

Each project contains CSCIs with different ratings.  Each CSCI within a 
project is required to interface with one or more additional CSCIs as part of a 
composite system.  The interaction includes both internal interfaces as well 
as interfaces to external systems.  The number of integrating CSCIs is 
defined as the total number of CSCIs in the project.  ESC formed three 
categories for their productivity analysis based on the number of integrating 
CSCIs and the required reliability level, as shown in Table 4-7.  

 

4.5 System-level cost estimating 
The category drawn from Table 4-7 specifies the productivity factor in Table 
4-8 to be used for the system level estimate.  An interesting note to the ESC 
productivity analysis shown in Table 4-8 is the narrow range of the 
productivity data.  Standard deviations for the three categories even without 
considering the project size and development environment are very low for 
the 93 projects contained in the database.  Note that there is no standard for 
defining productivity.   The standard in the guidebook is ESLOC/PM.  
However, ESC uses PM/KSLOC, so it is proper to use their definition in 
their example. 

                                                 
18 Boehm. B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, 1981. 

Table 4-7: Definition of complexity/reliability categories 

 Integrating CSCIs 

Reliability 0-6 CSCIs 7-10 CSCIs > 10 CSCIs 

Very low - Nominal 
(Moderate loss) 

Category 1 Category 1 No Data 

High 
(Major Financial Loss) 

Category 2 Category 2 Category 3 

Very high 
(Public safety required) 

Category 2 Category 3 Category 3 

 

Table 4-6: ESC reliability categories 

Category Definition 

Very low The effect of a software failure is the inconvenience incumbent on 
the developers to fix the fault.   

Low The effect of a software failure is a low level, easily-recoverable 
loss to users.   

Nominal Software failure causes a moderate loss to users, but a situation 
recoverable without extreme penalty.  

High The effect of a software failure can be a major financial loss or a 
massive human inconvenience.   

Very high The effect of a software failure can be the loss of human life.   
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System-level cost estimates, using either the productivity table approach 
extended from the McConnell-Putnam category definitions or from the ESC 
model, can quickly produce credible “ballpark” estimates.  Note that quickly 
does not equate to simply.   

The ESC model is derived from a collection of military projects.  The 
productivity table model is derived from a large set of projects containing 
both military and commercial developments.  The ESC model is also size-
independent.  Most of the projects investigated by ESC are large and not 
categorized by size.  Reliability is not considered in the productivity table 
model except where common to each of the 13 system categories.   

An estimate using the baseline effective software size is the most optimistic 
cost estimate since it assumes there will be no software growth during full-
scale development of the product.  The baseline estimate value is useful only 
if the lowest possible cost is of interest.  An estimate using the mean 
potential growth value is usually considered the most likely cost estimate.  
The maximum effective size growth value is the estimate that has the most 
meaning in a cost and/or schedule risk analysis.   The ESC model does not 
reflect the productivity decrease that occurs as the effective size increases 
with growth.   

4.6 Reality check 
All estimates should be validated.  Most of the historic data we look at is 
based on the cost and schedule for the development of CSCIs.  The 
productivity table information in Table 4-5 is a good source of historical 
validation data for a wide range of systems.  Judgment was used in defining 
the 13 product types and sorting the product development information into 
those types.   

A second part of any reasonable estimate is the consideration of risk.  
Software risk often presents itself as an increase in effective size. Large 
subsystems can be decomposed into smaller CSCIs which will, in turn, 
decrease the required schedule by developing smaller components.  The 
smaller components will achieve higher productivity which will reduce 
development cost.     

4.7 Allocate development effort 
The distribution of effort varies with the effective size of the system.  The 
larger the system, the more effort will be spent in system test and integration.  
The relative effort spent in creating the architecture increases with size as 
well.  The rough effort distribution as a function of source size is presented 
in Table 4-9. 

Table 4-8: Productivities for military applications by category 

Project Type Productivity 
(SLOC/PM) 

Productivity 
Factor 

(PM/KSLOC) 

Productivity 
Range 

(SLOC/PM) 

Standard 
Deviation 

(SLOC/PM) 

All Programs 131.7 7.60 n/a n/a 

Category 1 195.7 5.10 116.9 – 260.8 49 

Category 2 123.8 8.08 88 – 165.6 23.6 

Category 3 69.1 14.47 40.6 – 95.2 16.5 

 



35 
 

Each row of the table adds up to a percentage greater than 100% since the 
requirements effort and system test effort are not included in the full scale 
development effort resulting from Equation (4-1).  Full scale development 
includes the high level design (architecture), the development (detail design, 
code and unit test), internal component integration, and the technical 
management supporting the development activities. The requirements 
definition effort must be added on to the beginning of the development and 
system integration to the end.  Software maintenance is a separate 
calculation. 

The next step in the effort estimate is to calculate the effort to be assigned to 
each of the individual development and integration activities.  If system 
integration is to be included in the total system development effort, the 
development computed in the last step must be increased to account for this.  
The total effort is computed from the relationship: 

DevelopTotal EkE ×=     (4-3) 

where ETotal is the effort including both full-scale development and the 
CSCI integration effort, 

EDevelop is the full-scale development effort, and  

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on 
the anticipated system integration difficulty.   

A commercial standalone software product development may entail no 
system integration.  However, a typical integration factor k is in the range of 
1.21 to 1.40 for normal system integration requirements.  An integration 
factor value of 1.28 is a reasonable default for CSCI-system integration. 

Note that the effort expenditures in system development are not constant 
across all activities.  Some of the variance is due to different schedule 
periods for each activity.  Most of the variance, however, is due to a 
peculiarity in the way successful software development projects are staffed 
from the start of development through delivery.  The staffing profile that 
correlates well with successful projects will be described in Section 5.1.  It is 
known as the Rayleigh-Norden profile (named for the men who discovered 
the presence of the phenomenon) and projects staff at a linear rate at the start 
that is inversely proportional to the project complexity.  The complexity 
aspect is not visible at the system level, but becomes an important concept at 
the component level of the project.  

Remember, the system-level estimating model does not allow for the 
prediction, or projection, of a software development schedule.  The schedule 

Table 4-9: Total project effort distribution as a function of product size 

Size 
(KSLOC) 

Activity 

Rqmts. 
(%) 

High-Level 
Design (%) 

Develop 
(%) 

Sys. Test 
(%) 

Mgt. 
(%) 

1 4 12 77 17 11 

25 4 20 67 24 13 

125 7 22 63 25 15 

500 8 25 56 32 19 

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et 
al, 2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005 
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can only be produced when the system has been decomposed to the 
component (CSCI) level and estimated using a component level estimating 
technique. 

4.8 Allocate maintenance effort 
Life-cycle cost has multiple meanings.  A common definition relates to the 
software development process where the life cycle includes all development 
phases from requirements analysis through system integration.  A more 
realistic definition includes all phases from requirements analysis to disposal 
at the end of the software’s life.  The latter definition includes the 
maintenance of the software product, which can be many times more than 
the cost of development. It is common for the cumulative cost of 
maintenance to exceed the cost of full-scale development by the end of the 
fifth calendar year of operations. 

Software maintenance costs encompass two major categories: enhancing the 
software, and retaining knowledge of the software product.  Enhancements 
are of two types: (1) changing the product’s functional specification (adding 
new capability), and (2) improving the product without changing the 
functional specification.  Enhancement is the process of modifying the 
software to fit the user’s needs.  The activities we normally relate to 
maintenance, which involve making changes to the software, all fall into the 
enhancement category.  

Software product improvement falls into three subcategories19

• Corrective maintenance: processing, performance, or implementation 
failures 

: corrective, 
adaptive, and perfective. 

• Adaptive maintenance: changes in the processing or data environment 

• Perfective maintenance: enhancing performance or maintainability 

The second maintenance category, knowledge retention, is often ignored in 
the estimate.  The number of people charged with the maintenance task must 
be large enough to retain knowledge of the inner workings of the software 
product; that is, a staff must be retained who have detailed knowledge of the 
software.  For large software products, the number is typically not small. 

The system-level software estimating model does not have adequate 
information to project the defect removal effort.  There is no information 
describing the development that is essential for the calculation.  However, 
there is adequate information to deal with the enhancement and knowledge 
retention costs. 

4.8.1 Software enhancement 
The enhancement effort uses the concept of Annual Change Traffic (ACT), 
which is the decimal fraction of the total product source code that will 
undergo change or modification during a year and includes all types of 
enhancements. 

The enhancement effort component is given by the expression: 

                                                 
19 Swanson, E.B. The Dimensions of Maintenance. Proc. of the IEEE/ACM Second 
International Conference on Software Engineering. Oct. 1976. 
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totalS
gPF
ACTE =1  (PM/YR)    (4-4) 

where  E1 is the enhancement effort (PM per year) 

 ACT is the annual change traffic (decimal fraction), 

g is the relative quality of the maintenance organization (0.5 to 1.7), 

 PF is the software development productivity factor (ESLOC/PM), 
and 

 totalS  is the total software size (SLOC). 

As a rule of thumb, based upon historical data, once the enhancement effort 
is greater than 20 or 30 percent, it is more practical to consider starting a 
fresh development to incorporate the changes or enhancements into the 
system.  Imagine that the ACT value was 1.0.  That implies the system 
would be completely replaced within one year of maintenance.  It is not very 
likely that this would happen, especially if the initial system development 
took three or four years. 

The productivity of the maintenance organization is determined relative to 
the quality (efficiency) of the development organization.  If the development 
organization is maintaining the software, the value g is 1.0.  Often the 
maintenance organization is not as experienced or competent as the 
development team.  In that case, the g factor must be decreased (e.g., 0.8). 

4.8.2 Knowledge retention 
Operational knowledge of the software is essential to maintaining the 
product over its lifetime (i.e., changing and/or enhancing the software 
product).  The knowledge retention effort is often ignored in forecasting the 
effort required to keep the product functioning.  Ignoring the operation 
knowledge retention effort leads to either severe cost overruns or poor 
product knowledge during the maintenance activity. 

The number of personnel required to retain operational knowledge of the 
software product can be projected by utilizing a concept that persists from 
early software folklore.  An old heuristic “Each programmer can maintain 
four boxes of cards” (where a card box contained 2,000 computer punch 
cards) is almost as old as software itself.  An updated version of the heuristic 
that is very applicable today is: 

 totalS
gD

E 2.9
2 =   PM per year    (4-5) 

where  E2 is the enhancement effort (PM per year), 

 D is the effective software product complexity, 

g is the relative quality of the maintenance organization (0.5 to 1.5) 
with 1.5 matched with exceptional organizations, and 

 totalS  is the total software size (KSLOC). 
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4.8.3 Steady state maintenance effort 
The steady-state maintenance effort per year is given by: 

 ),max( 21 EEEm =  (PM/YR)   (4-6) 

where mE  is the steady-state software product maintenance effort.  

Equation (4-6) shows that the personnel performing enhancement of the 
software product are also those holding the operational knowledge of the 
product.  Only in the case where the enhancement requirements exceed the 
number of personnel necessary to retain operational knowledge of the 
product are additional personnel added to the maintenance task.  Often, the 
operational knowledge requirements are much larger than the enhancement 
requirements.  Then, maintenance effort can be computed from Equation (4-
5) alone.  
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Section 5 
Component-Level Estimating 

Process 
The component-level estimating process is generally used after details such 
as an architectural design for the system are available.  Programs after 
Milestone B generally support component level estimates. The system 
definition will have functional component requirements defined, namely 
Software Requirements Specifications (SRSs) and the interfaces between 
components defined by Interface Control Documents (ICDs) or Interface 
Requirements Specifications.  A component is a single CSCI.  The 
information available also includes a size estimate and an application type 
as shown in Table 5-1.  The example component sizes and functionality 
were derived from an actual system with the names changed. 

The developer may also be known at this time, or at least the developer 
class will be known well enough that the typical characteristics can be 
defined.   

The component-level estimate model compensates for the system model’s 
narrow applicability by incorporating a description of the developer 
capability, a set of environment factors that adjust the productivity factor 
to fit a wider range of problems, and a set of product characteristics.  The 
development effort is equal to the product of a proportionality constant, a 
set of adjustment factors that account for the productivity impacts of the 
development environment and the product constraints, as well as the 
effective size adjusted for communication issues.  The generalized 
mathematical form of this model is: 

 β
e

n

i
ikd SfCE 







= ∏

=1
    (5-1)  

where   
kC = proportionality constant 

if  = the ith environment factor,  
n = the number of environment factors, 
Se = effective software size, and   
β = an entropy factor that measures the communication efficiency in 

the development team. 

The environment factors can be grouped into four distinct categories: 
personnel, management, environment, and product.  Table I-11 shows the 
common environment factors. 

The component model compensates for the productivity decrease in large 
projects by incorporating an “entropy” factor to account for the productivity 
change with effective size.  The entropy factor accounts for the impact of the 
large number of communications paths that are present in large development 
teams.  The development team theoretically has 2/)1( −nn  communication 
paths where n is the number of development personnel.  The entropy factor 
is similar to the productivity variation with effective size shown in Table 4-
5. 

The devil is in the details. 
         Anonymous 

Caution: The component-
level tools should not be 
applied to system-level 
estimates.  The underlying 
architecture of the model is 
not compatible with the 
assumption at the heart of 
system-level estimates. 

Task Name 
Size, Eff. 
Baseline 
(ESLOC)  

Control Data Links 236,000 

Satellite 152,000 

Transmitter 96,000 

Receiver 56,000 

Radio 84,000 

Brain 184,000 

Sensors 157,000 

OS (APIs) 53,000 

System Total 630,000 

 

Table 5-1: CSCI Size Estimates 
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While the component estimating model requires considerably more 
information from the estimator than is required by the system-level model, 
the extra effort is compensated for by the additional capabilities of the tools 
that implement the various forms of the component model.  Manual 
calculation using the component model is more tedious, but offers greater 
accuracy and reward for the effort.  For example, the system-level approach 
in Section 4 cannot project a development schedule.  Most component-level 
models do provide that capability. 

The number of environment parameters varies from 15 to 32, depending 
upon the particular implementation of the model as described in Equation (5-
1).  The 1981 implementation of COCOMO I described by Boehm20 uses 
only 16 parameters.  COCOMO II21 requires 23 parameters.  
Implementations of the Jensen model,22

Most of the tedium involved in component model use can be bypassed by 
using a set of default environment parameter values.  However, the accuracy 
of the component model is decreased significantly if the default value set is 
used because of assumptions made in the default environment.  Many 
estimating tools offer parameter sets or templates that describe many 
environment and product-type options.  It is important to understand how the 
parameter set options are combined for a specific estimate.   

 including Sage and SEER-SEMTM, 
require 32 parameters. 

In the component-level model, a development schedule for each component 
can be approximated by an equation of the form: 

3* dd EXT = months    (5-2) 

where Td  = development time (months), 

X = an empirically derived constant between 2.9 and 3.6 depending 
on software product complexity, and 

 Ed = development effort (PM). 

Equation (5-2) gives the optimum staffing profile’s minimum schedule.  At 
this point, we will describe a straightforward procedure for a system-level 
cost analysis.  The steps are, briefly: 

1. Construct a list of the software elements (CSCIs) contained in the 
software system.  These elements must be CSCIs, which limits the 
initiation of a component-level estimate until after the CSCIs are 
defined. This condition is generally satisfied after Milestone B. 

2. Determine the complexity of each CSCI element (Section 5.2).  Note: 
Some component-level model implementations consider complexity to 
be a product descriptor in the environment. 

3. Determine the effective size of each element in the system software list.  
The element size information may be available in many forms including 

                                                 
20 Boehm, B.W. Software Engineering Economics. Prentice-Hall. Englewood Cliffs, 
NJ: 1981. 
21 Boehm, B.W., A. Egyed, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. 
Selby. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0.” 
Annals of Software Engineering. 1995: 295-321. 
22 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology. 
Proc. of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers. 
Pacific Grove, CA., Nov.17-19, 1980. 

In most estimating tools, the 
input software size form is 
converted to SLOC internally 
before computing the 
development cost and schedule.  
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source lines of code, function points, use cases, object points, or other 
measures. 

a. Determine the baseline size estimate for each element (Section 
5.3.1, and 6.4 for source code estimates, Sections 5.3.2 and 6.7 
for function points). 

b. Calculate the projected size growth for each element depending 
upon the maturity of the project and the element complexity 
(Section 6.5).  

4. Determine the impact of the development environment (effective 
technology constant) from the set of environment factors.  The effective 
technology constant serves as the productivity factor for each CSCI 
(Sections 8 through 10). 

5. Calculate the development effort for each CSCI in the system (Section 
5.6). 

6. Calculate the development schedule for each CSCI in the system.   

7. Allocate the development effort and schedule to the project phases. 
(Section 5.8). 

8. Validate the development effort and schedule estimates (Section 5.7).  
Compare the productivity obtained for the estimates with the historical 
development productivity for similar products.  The productivity results 
should be similar. 

Process steps 3 through 7 are generally calculated, or supported, in the 
commercial software estimating tools. 

The component-level software cost and schedule estimating process 
described in this section is supported by a component-level case study in 
Appendix G that demonstrates the development of an estimate 
from inception through completion.  Evolving fragments of the 
estimate are updated as each step or portion of a step is 
completed.  

5.1 Staffing profiles 
The Peter Norden study23

Norden also noted that the rate at which the project could 
effectively absorb staff was proportional to the complexity of the problem to 
be solved.  This rate is noted in the figure as the “learning curve.”  History 
validates the heuristic that the more complex the problem, the slower the rate 
that staff can be added to (or absorbed by) the project.  Combining the two 
curves produced the curve shown in the figure as a dashed line (often 
referred to as the Rayleigh-Norden Curve).  The dashed line represents the 
optimum staffing profile in a software development project. 

 at IBM showed the maximum 
staffing rates for successful research and development projects 
did not exceed the maximum staffing rate defined for the 
associated project type.  Norden asserted that an engineering 
development can be viewed as a set of unsolved problems.  
Over time, the number of problems remaining to be solved, 
P(0), decreased exponentially to zero (as shown in Figure 5-1).   

                                                 
23 Norden, P. “Useful Tools for Project Management.” Management of Production. 
Penguin Books. New York, NY: 1970. 

 
Figure 5-1: Rayleigh-Norden project staffing profile 

Size growth is calculated 
automatically in the Sage 
model. 

In probability theory and statistics, 
the Rayleigh distribution is a 
continuous probability distribution. 
It can arise when a two-dimensional 
vector (e.g. wind velocity) has 
elements that are normally 
distributed, are uncorrelated, and 
have equal variance. The vector’s 
magnitude (e.g. wind speed) will 
then have a Rayleigh distribution. 
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In an ideal software development, the peak of the staffing curve occurs at the 
time of the Formal Qualification Test (FQT), or the end of full-scale 
software development.  Optimum staffing increases during the entire 
development process to minimize the development schedule.  The decaying 
portion of the staffing curve occurs during system integration and operations. 

The Rayleigh-Norden staffing profile is described by the relationship 

)2/exp()/()( 222
dd ttttKtf =    (5-3) 

where )3945.0/( dEK = , 

 Ed  = full scale development effort (person-years), 
 t  = elapsed development time (years), and 
 td  = full scale development time (years). 

The value of 2/ dtK  defines the maximum staffing rate in 
persons per year.  Exceeding the maximum staffing rate 
correlates strongly with project failure. 

The effects of over- and under-staffing are illustrated in Figure 
5-2.  Front-loading the staffing profile – in an attempt to 
decrease development schedule – adds people to the project at 
a rate that exceeds the rate the project can absorb them.  The 
result is wasted effort that is not only unavailable to the 
project, but also takes people from the project that could be performing 
useful work.  If the project is planning the development effort to be Ed 
person months, funding will not be available for the staff needed to maintain 
the Rayleigh-Norden profile, so the ultimate effect will be potentially higher 
costs and a delivery delay or slipped schedule.  The Rayleigh-Norden 
staffing profile results in the optimum development schedule and is the most 
efficient project staffing method.  

5.2 Product complexity 
An important parameter in both system-level and component-level estimates 
is the product complexity.  Complexity is determined for both estimate types 
in the same manner as described in Section 4, so the methodology is not 
repeated here.   

5.3 Size estimating process 
The size values used in software cost and schedule estimates are derived 
from a three-step process:   

1. Determine the baseline effective size value and the baseline size 
standard deviation for each CSCI.  If the system contains function points 
as part of the size specification, the function points (including minimum, 
most likely, and maximum counts) must be converted into equivalent 
(effective) source lines of code as part of this step.  Some estimating 
tools allow the input of function points as a size measure.  The function 
point count is converted internally to equivalent source lines of code 
using a process known as “backfiring.”  

2. Determine the maximum size growth for each CSCI.  The maximum 
growth is determined from the developer capability, the maturity of the 
software product, the product complexity, and the reuse level of pre-
existing source code. 

 
Figure 5-2: Effects of improper staffing 

Note: equivalent source 
lines related to total code 
size, not effective code size. 

 

Brooks’s law is a principle in 
software development which says 
that adding manpower to a 
software project that is behind 
schedule will delay it further. It 
was coined by Fred Brooks in his 
1975 book, The Mythical Man-
Month. 

 

http://en.wikipedia.org/wiki/Software_development�
http://en.wikipedia.org/wiki/Fred_Brooks�
http://en.wikipedia.org/wiki/1975�
http://en.wikipedia.org/wiki/The_Mythical_Man-Month�
http://en.wikipedia.org/wiki/The_Mythical_Man-Month�
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3. Determine the mean growth estimate for each CSCI.  This value is 
normally used as the most likely size in the majority of cost and 
schedule estimates.   

This process is identical to that described for system-level estimates in 
Section 4.5, so it is not repeated here. 

5.4 Development environment  
The first step in evaluating the development environment for the estimate is 
to determine the developer’s raw capability; that is, the capability without 
the degradation or loading caused by the environment and constraints 
imposed by the project requirements.  This measure normally changes very 
little over time unless there is a major change in the corporate approach to 
software development.  This rating is described in more detail in Section 8 
and Appendix I.  The basic technology constant equation is contained in 
Section 5.4.4. 

The basic capability ratings are consistent across the majority of software 
development organizations and are close to the mean basic technology 
constant rating for the industry. 

5.4.1 Personnel evaluation 
The first environment set is the experience level of the personnel within that 
environment.  There are four experience categories of interest: development 
system, development practices, target system, and the required programming 
language.   

A segment of the environment set is the management factors.  They have an 
impact on productivity.  These factors reflect the use of personnel from other 
organizations and the dispersal of development personnel across multiple 
sites by the development organization.  The combined impact (product) of 
these parameters can produce a substantial productivity penalty.  These 
ratings are described in more detail in Section 8. 

5.4.2 Development environment evaluation 
The second environment segment evaluation determines the impact of the 
stability and availability of the environment; that is the volatility of the 
development system and associated practices, the proximity of the resource 
support personnel, and access to the development system.   

For example, a development environment might be described as follows: the 
development practices are expected to experience minor changes on a 
monthly average during development due to process improvement.  Process 
improvement should ultimately improve productivity, but will decrease 
productivity in the short-term during the period of change.  The development 
system will also show productivity losses during system updates that occur 
on a monthly average.  This is a normal condition.  The ideal approach is to 
freeze the system hardware and software during the duration of the project. 

Detailed descriptions of the development environment ratings are provided 
in Section 8. 

5.4.3 Product impact evaluation 
The third environment segment is used to evaluate the impact of the product 
characteristics and constraints on the project productivity.  The information 
in this segment is reasonably constant for a given product type, and can be 
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combined into a template that may experience few changes within the 
product type due to specific product implementations.   

Requirements volatility is a challenging parameter to discuss and evaluate.  
The volatility definition we use in the guidebook is: the software is a “known 
product with occasional moderate redirections,” since the product will have 
some functionality improvements beyond the existing products.  

The individual product characteristic parameter ratings are described in more 
detail in Section 9. 

5.4.4 Basic technology constant 
The basic technology constant24

 

 Ctb describes the developer’s raw capability 
unaffected by the project environment.  The basic technology constant is 
calculated using the algorithm in Equation (5-4): 

 

(5-4) 

 

 

 

where  ACAP is the measure for analyst capability,  

AEXP is a measure of developer application experience,  

MODP is the use of modern development practices,  

PCAP is the programmer capability,  

TOOL is use of modern development tools,  

RESP is the development system terminal response time, and 

TURN is the development system hardcopy turnaround time.   

 

The parameters ACAP, AEXP, MODP, PCAP, RESP and TURN are a subset 
of the environment factors described in detail in Section 8. 

5.4.5 Effective technology constant   
The productivity factor for Jensen-based models (Seer, SEER-SEMTM and 
Sage) is the effective technology constant Cte defined in Equation (5-5).  
This equation combines the basic technology constant with the product of 
the development environment and product characteristic factors if :   

  

                                                 
24 Jensen, Dr. Randall W. An Improved Macrolevel Software Development Resource 
Estimation Model. Proc. of the Fifth Annual International Society of Parametric 
Analysts Conference. St. Louis, MO, Apr. 26-28, 1983. 

 

People under time pressure don’t 
work better; they just work faster. 

     DeMarco and Lister 
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where  Cte is the effective technology constant,  

Ctb is the basic technology constant defined in Sections 5.4.4 and 8, 
and  

if  are the remaining environment factors not included in the basic 
technology constant calculation. These are covered in Sections 8-10 
and Appendix I. 

The effective technology constant is equivalent to the productivity factor 
introduced in Sections 4 and 7.  The constant combines the impact of the 
development environment, which is not captured in the productivity factor, 
and the product constraints that are captured in the 13 application types.  A 
2:1 ratio of the basic to the effective technology constant is common and a 
ratio of 4:1 is not uncommon for highly constrained or secure software 
systems. 

The productivity index (PI) is another widely used form of an effective 
technology constant.  The PI used by the Software Life Cycle Model 
(SLIM®) estimating approach from Quantitative Software Management 
(QSM) is described in detail in Section 7.2.2.    

5.5 Development cost and schedule 
calculations 
Seer is an implementation of a component-level model that will be used to 
demonstrate cost and schedule estimates.  This model was created in 1979 
and is the basis of the Sage and SEER-SEMTM (now SEER for Software™) 
software estimating tools described in Appendix E. 

Equation (5-6) is the Seer representation of the general component-level 
effort equation shown in Equation (5-1).  The product of the environment 
factors is calculated in the denominator of the bracketed portion of Equation 
(5-6).  Note that D (complexity) is factored out of the product to illustrate 
that development cost is a function of complexity in this model.  The 
equation shows that the simpler the project (higher value of D), the higher 
the effort, when given the size and the environment.  Conversely, the higher 
the complexity, the lower the effort; however, the schedule is increased, as 
shown in Equation (5-7).  This relationship pair is referred to as the cost-
schedule tradeoff.  A longer schedule means a smaller team which, in turn, 
equates to higher productivity: 

2.1
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te
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= person months  (5-6) 

where  Ed is the full-scale development effort (PM), 
D is the product complexity,  
Cte is the effective technology constant, and  
Se is the effective component (CSCI) size (ESLOC). 
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Equation (5-7) specifies the development schedule in months.     
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= months   (5-7) 

where  Td is the full-scale development schedule (months), 
Cte is the effective technology constant, 
D is the product complexity, and 
Se is the effective component (CSCI) size (ESLOC). 

Equation (5-8) is an alternate form of the schedule equation that is consistent 
with the general schedule form shown in Equation (5-2).  Note again that by 
factoring D out of the proportionality constant, the effect of D on the 
schedule can be seen explicitly: 
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=     (5-8) 

where  Td is the full-scale development schedule (months), 
Ed is the full-scale development effort (PM), and 
D is the product complexity. 

5.6 Verify estimate realism 
Once an estimate is complete, it is important to step back and objectively 
validate the results.  The most important estimate reality checks are: 

1. Is the productivity value for each component reasonably close to the 
productivity value for that component type (see Table 7-1)? 

2. Is the productivity estimate comparable to historical developer 
productivity for similar projects? 

3. Is the size, including growth, for each component within the range of 
5,000 to 200,000 source lines? 

4. Is the size estimate, with growth, consistent with the effective size for 
completed historical projects?  

5. Is the schedule for each component greater than 38.2 dE× ?  

All estimates should be validated.  Most of the historic data we look at is 
based on the effort (cost) and schedule for the development of CSCIs.  An 
alternate approach that may be used, when historic data is not available, is 
comparing your estimate’s productivity to the factors in Table 7-1.  The 
CSCI of interest is compared to the 13 system types.  The software types in 
your estimate may not map directly to the task names of those listed in Table 
7-1; however, the productivity values are typical of the product type.  A 
comparison to the general category is usually sufficient to validate your 
productivity estimate. 

5.7 Allocate development effort and 
schedule 
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5.7.1 Effort allocation 
The next step in a component estimate is to assign the effort to the 
development activities.  The distribution of effort varies with the effective 
size of the system.  The larger the system, the more effort will be spent in 
system test and integration.  The relative effort spent in creating the 
architecture increases with size as well.  The cost estimation tools (each 
using their own allocation percentages and equations) normally perform the 
total project effort allocation for the system. 

If you want to calculate the total project effort yourself, use the rough effort 
distribution as a function of source size presented in Table 5-2.   

Note that the design, develop, and management columns add up to 100 
percent.  However, each row of the table adds up to a percentage greater than 
100 percent since the effort allocations are derived from the full scale 
development effort.  Full-scale development includes high-level design 
(architecture), development (detail design, code and unit test), and internal 
component integration and management.   Hence, the total effort includes 
full-scale development, requirements analysis, and system test.   

The total effort is computed from the relationship: 

DevelopTotal EkE ×=     (5-9) 

where ETotal is the total project effort through system integration (PM) 

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on 
the difficulty of integrating the software component and the system, 
and  

EDevelop is the project development effort from SRR through FQT.  

A commercial standalone software product development may not require any 
system integration.  Even so, an integration factor value of 1.28 is a 
reasonable default for CSCI-system integration. 

Most component-level software estimating tools perform the effort 
distribution automatically following an allocation table which may differ 
from the one presented in Table 5-2.  They generally follow the optimum 
allocation algorithm based on the Rayleigh-Norden staffing profile.  Many 
software estimating tools allow the user to specify the effort allocation for 
requirements analysis and system test.  Table 5-2 is a good guideline for 
selecting the appropriate allocations for these activities. 

Table 5-2: Total project effort distribution as a function of product size 

Size 
(KESLOC) 

Activity 

Rqmts. 
(%) 

High-Level 
Design (%) 

Develop. 
(%) 

Sys. 
Test (%) 

Mgt. 
(%) 

1 4 12 77 17 11 

25 4 20 67 24 13 

125 7 22 63 25 15 

500 8 25 56 32 19 

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et al, 
2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005. 

Larry Putnam is one of the 
pioneers in software cost and 
schedule estimating.  He created 
the SLIM® estimating model in 
1976 based on project data 
obtained from the U.S. Army 
Computer Systems Command. 
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5.7.2 Schedule allocation 
Schedule allocation depends on the effective size of the software system and 
the software development approach.  A classic waterfall development 
approach has schedule milestones at different times than an incremental or 
agile development.  There are some guidelines to help approximate 
milestones in ballpark estimates.  The cost estimation tools (each using their 
own allocation percentages and equations) normally perform the schedule 
allocation for the system. 

If you want to calculate the schedule yourself, use the effort schedule 
breakdown shown in Table 5-3. 

The overall schedule distribution for any project is based on the entire 
project totaling 100 percent of the schedule.  The numbers in parentheses 
represent typical allocations for each size group.   Judgment is necessary 
when selecting the specific values from the table for the project in question.   

5.8 Allocate maintenance effort 
The term “life cycle cost” has multiple meanings.  A common definition 
relates to the software development process which includes all of the 
development phases from requirements analysis through system integration.  
Another realistic definition includes all of the phases from requirements 
analysis to disposal at the end of the software’s operational life.  The second 
definition includes maintenance of the delivered software product, which can 
be many times the cost of development25

The effort related to the maintenance categories is discussed in Section 4.8.  
The calculations and procedures are common to both system- and 
component-level estimates.  Note that the component-level estimating model 
can be used to predict the defect removal effort unless there is adequate 
information describing the number of defects introduced during 
development; however, there is usually enough information to estimate the 
enhancement and operation support costs.

. Historical data shows that it is not 
uncommon for the cumulative cost of maintenance to exceed the cost of full-
scale development by the end of the fifth calendar year of operations. 

                                                 
25 Another widely used, inappropriate definition for maintenance is “when the 
development budget is depleted.”  This is not a definition used in software 
estimating, but included for completeness. 

Table 5-3: Approximate total schedule breakdown as a function of product size 

Size 
(KESLOC) 

Activity 

Requirements 
(%) 

High-Level 
Design (%) 

Development 
(%) 

System 
Test (%) 

1 6-16 (6) 15-25 (20) 50-65 (55) 15-20 (19) 

25 7-20 (7) 15-30 (19) 50-60 (52) 20-25 (22) 

125 8-22 (8) 15-35 (18) 45-55 (49) 20-30 (25) 

500 12-30 (12) 15-40 (15) 40-55 (43) 20-35 (30) 

Sources: Adapted from McConnell, 2006; Putnam and Myers, 1992; Boehm et al, 2000; 
Putnam and Myers, 2003; Stutzke, 2005. 
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 Section 6 
Estimating Effective Size 

Effective size is the most important cost and schedule driver in a software 
development estimate.  Not only is size the most important driver, it is the 
most difficult to estimate.  Size comes in many shapes and forms, but most 
of them are of little value in realistic effort estimates. 

An accurate size estimate could be obtained in the early days of estimating 
(the 1960s) by counting source lines of code.  The big question in those days 
related to how a source line of code (SLOC) was defined: either by punched 
card images or executable statements.  As software developments increased 
in size, the meaning of SLOC became complicated because of the use of 
reused code in large projects. The definition of SLOC was still not resolved 
until as late as 2005.   

The SLOC definition frustration led many researchers to seek alternate 
methods of measuring the size of a software development.  Albrecht and 
Gaffney26

This guidebook discusses the two most widely used software-sizing 
approaches: SLOC and FPs.  The approaches are radically different from 
each other.  The discussion of the two methods can be extended to support 
others that continue to evolve from the SLOC and FP methods.  SLOC are 
the focus of the sections starting with Section 6.1.  FPs are the topic of 
discussion beginning in Section 6.7. 

 of IBM proposed a functional measure of software size that 
became a second size standard.  Function Points (FPs) are a measure of total 
software size, which ignores reuse, but is effective very early in the 
development process when SLOC is still difficult to predict.  FPs spawned 
new sizing methods including feature points, object points, and use cases, 
among others. 

Neither of these approaches solves the problem of estimating the effective 
size necessary to project the cost and schedule of a software development.   

The early 2000s introduced the use of code counters as a means of obtaining 
size information from completed software components.  This allowed the 
gathering of computer software configuration item (CSCI) or functional 
sizing data.  Depending on the configuration of the counting software, the 
measured size could represent executable SLOC, total SLOC, or something 
in-between.  This data can help reduce the difficulty in estimating cost and 
schedule. 

Size information includes three physical components: 

1. Amount of new source code to be added (new) to satisfy current product 
requirements. 

2. Amount of the reused source code to be modified (changed or deleted at 
the module level) to satisfy current product requirements. 

3. Amount of source code being reused without change from previous 
software products. 

                                                 
26 Albrecht, A. J., and Gaffney, J. E. “Software Function, Source Lines of Code, and 
Development Effort Prediction:  A Software Science Validation.” IEEE Transactions 
on Software Engineering. Nov. 1983. 

 Software is like entropy.  It is difficult to 
grasp, weighs nothing, and obeys the Second 
Law of Thermodynamics; i.e., it always 
increases. 

   Norman Augustine, 1983 
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Figure 6-1: Source code taxonomy 

Effort is not simply related to the number of SLOC, but is related to the work 
required to use or produce those lines.  Reused SLOC is not a zero-effort 
component because work is required to incorporate and test that component. 

Assuming a constant effort for size is equivalent to assuming the 
development includes only new code.  That is not a good assumption; the 
effort needed to modify and reuse code is different than creating all new 
code.  

A definition of source code requires some base architecture definitions.  The 
CSCI is the fundamental element for which effort, schedule, and productivity 
data is collected in universally applicable numbers. Lower-level data is very 
dependent upon the individual performance and, therefore, not generally 
applicable to estimates.  System-level data also is difficult to use because of 
the combination of different complexity types of the CSCIs.    

CSCIs contain elements that can be major subcomponents of the 
CSCI or as small as modules (procedures, subroutines, etc.).  
There can be several component layers in the CSCI, of which the 
smallest element is the module (or unit) (see Figure 6-1).  
Modules contain SLOC including executable source lines of 
code, declarations, directives, format statements, and comments. 

The purpose of Section 6 is to demonstrate the philosophy and 
process of developing an effect size value that can be used in a 
realistic software cost and schedule estimate. 

6.1 Source code elements 
A line of source code is defined as a program statement that consists of new, 
modified, deleted, or reused code or commercial off-the-shelf (COTS) 
software.  Total size includes all four statement types.  The elements are 
defined in subsequent subsections.  First, we need to define some important 
concepts: the black box and the white box. 

6.1.1 Black box vs. white box elements 
A black box is a system (or component, object, etc.) with known inputs, 
known outputs, a known input-output relationship, and unknown or 
irrelevant contents.  The box is black; that is, the contents are not visible.  A 
true black box can be fully utilized without knowledge of the box content.   

A white box is a system that requires user knowledge of the box’s contents 
in order to be used.  Component changes may be required to incorporate a 
white-box component into a system.  The box is white or transparent, and the 
contents are visible and accessible. 

A software component becomes a white box when any of the following 
conditions exist: 

1. A component modification is required to meet software requirements. 

2. Documentation more extensive than an interface or functional 
description is required before the component can be incorporated into a 
software system. 

The black box concept, applied to software systems, becomes particularly 
important where black boxes (or objects, reusable components, etc.) are used 
as components without the engineering, implementation, integration, and test 
costs associated with their development.  COTS software is an example of an 
applied black box.  A white box has visible source code; that is, the total 
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Figure 6-2: Black box description depicting 

relationship between effective size (St) and box type. 

Black Box
St = 0

White Box
St >> 0

 

 

accessible source code size in the box is greater than zero. Black box code 
is unavailable and unknown; that is, the total source code size within the 
black box is conceptually equal to zero (as shown in Figure 6-2).  No 
knowledge of the black box code is necessary to utilize the black box 
component. 

COTS software elements satisfy the black box definition.  There may be 
millions of executable source code lines within the black box, but 
knowledge of this internal code is not necessary to utilize the code in a 
new system.  Only terminal characteristics are required for use. 

6.1.2 NEW source code 
Source code that adds new functionality to a CSCI is referred to as “new” 
code.  New code, by definition, is contained in new modules.  Source code 
modifications packaged in reused (pre-existing) modules are referred to as 
“modified” source code. 

6.1.3 MODIFIED source code 
Source code that changes the behavior or performance of a CSCI is referred 
to as “modified” code.  Modified code, by definition, is contained in pre-
existing white-box modules.  If one countable SLOC within a module is 
added, deleted, or modified; the entire countable SLOC in the module is 
counted as modified SLOC.  For example, if a module contains 60 SLOC of 
which we delete 10 SLOC and change 10 SLOC, the modified SLOC count 
is 50 SLOC (60 – 10). 

6.1.4 DELETED source code 
Source code that deletes functionality from a CSCI is referred to as “deleted” 
code.  Deleted code, by definition, represents the total source code contained 
in a deleted module.  Source code deletions within a modified module are 
not counted as deleted source code. 

6.1.5 REUSED source code 
Modules that contain executable, declaration, directive, and/or form 
statements (satisfies the design, document, and test criteria), and are used 
without modification are referred to as “reused” code.  Like modified code, 
reused code is also contained in pre-existing white-box modules.  Reused 
code is not modified in any way, but some analysis and/or testing may be 
necessary in order to assess its suitability for reuse.  The countable source 
code in the reused module is known; that is, the total size is greater than 
zero.  It is possible to reverse-engineer and perform regression tests on 
reusable elements. 

6.1.6 COTS software 
It is important to formally define COTS software because of its impact on 
the physical and effective size of the software CSCI.  This definition is 
clearly described using the definitions of black and white boxes. 

Software black box component (COTS) behavior can be characterized in 
terms of an input set, an output set, and a relationship (hopefully simple) 
between the two sets.  When behavior requires references to internal code, 
side effects, and/or exceptions, the black box becomes a white box. 

COTS products have undefined 
size, only functional purposes; 
therefore, you cannot include 
COTS software as part of the 
reuse size.  Effort must be added 
directly in the effort 
computations. 
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COTS software is black-box software for which the countable source code is 
not known, only the functional purpose.  Since the contents of the COTS 
element are unknown (total SLOC is essentially zero, St = 0), the COTS 
element can only be tested from the element interface as part of the system.  
Reverse-engineering and regression testing cannot be performed on a COTS 
element.   

6.1.7 Total SLOC 
Total SLOC is the sum of the modified, the reused, and the new SLOC.  As 
indicated above, the contribution of COTS to the total SLOC is zero. 

6.2 Size uncertainty 
Size information early in a project is seldom, if ever, accurate.  Information 
presented in a Cost Analysis Requirements Description 
(CARD) is generally predicted during a concept development phase prior to 
the start of full-scale development.  CARD information contains 
considerable uncertainty.  Size information is often presented as a single 
value which leads to a point estimate of cost and schedule; however, the 
information is more accurately expressed as three values representing a 
minimum (most optimistic), a most likely, and a maximum (most 
pessimistic) value to give a more realistic picture of the information.   

The size values used in a software cost and schedule estimate are 
typically derived from a three-step process.  The first step determines 
the nominal effective, or most likely, size value and the nominal size 
standard deviation.  The “low” size value (10 percent probability) is 
equal to the mean value minus the nominal size standard deviation in 
the normal distribution shown in Figure 6-3.  In practice, the size 
distribution is skewed (non-normal).   

The second step produces an estimate for the maximum size (90 
percent probability).  

The third step determines the mean growth estimate used as the most likely 
size value in the cost and schedule estimate.  The mean estimate, assuming a 
normal distribution, is the center value of the distribution (as shown in 
Figure 6-3).  A non-normal mean value will be above the median value for a 
distribution, skewed toward the low side.  The low, mean, and high size 
values are also used in the software risk analysis.   

As an example, the CSCI size could be at least 5,000 source lines, most 
likely 7,500 lines, or as large as 15,000 lines.  The mean value is not 
necessarily in the center of the range; that is, the peak of a normal 
distribution.  The available commercial estimating tools internally adjust the 
mean value of the size distribution to a pseudo-normal form with an 
associated standard deviation.  The mean value formula is: 

  

  

 
Figure 6-3: Normal distribution 
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Smean = (Smin + 4Sml + Smax)/6    (6-1) 

where Smean = mean size value, 
 Smin = minimum size value, 
 Sml = most likely size value, and 
 Smax = maximum size value. 

and the standard deviation is 

Sstd = (Smax - Smin)/6     (6-2) 

6.3 Source line of code (SLOC) 
During the summer of 2006, a group of senior software estimators from 
major software developers in the aerospace community formulated a SLOC 
definition that was compatible with the commercial software estimating tools 
and the major estimating methodologies.  The definition is also compatible 
with current code counting methods.  This section contains the result of the 
2006 collaboration. 

SLOC is a measure of software size.  A simple, concise definition of SLOC 
is any software statement that must be designed, documented, and tested.  
The three criteria (designed, documented, and tested) must be satisfied in 
each counted SLOC.  A statement may be long enough to require several 
lines to complete, but still is counted as one SLOC.  Multiple statements may 
be entered on a single line, with each statement being counted as a single 
SLOC.  All source statements can be categorized into one of five categories: 

1. Executable 
2. Data declarations 
3. Compiler directives 
4. Format statements  
5. Comments 

Comment statements do not satisfy the SLOC criteria.  Comments are not 
designed, documented, or tested, but are part of the software documentation.  
Applying the SLOC criteria to the remaining four statement categories, the 
following statements are referred to as countable SLOC: 

• Executable  
• Data declarations  
• Compiler directives 
• Format statements  

Each of the countable SLOC categories is defined in the following 
subsections. 

6.3.1 Executable  
Executable statements define the actions to be taken by the software.    These 
statements do not include logical end statements (fails SLOC criteria) or 
debug statements inserted by the programmer for development test unless the 
debug code is required in the software requirements.  In other words, non-
deliverable debug code is not formally designed or tested, and likely not 
documented either—and therefore ignored in the executable SLOC count.   
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6.3.2 Data declaration 
Data declarations are formally designed, documented, and tested when they 
are written (or defined).  Declarations are commonly copied into software 
elements once they have been defined.  

6.3.3 Compiler directives 
Compiler directives are formally designed, documented, and tested when 
they are written.  Include statements for the data definitions are each counted 
as one SLOC where entered. 

6.3.4 Format statements 
Format statements are remnants of the Fortran and COBOL programming 
languages, but do satisfy the criteria for definition as a SLOC.  Format 
statements often require multiple lines for definition. 

6.4 Effective source lines of code 
(ESLOC) 
A realistic size estimate is necessary to reasonably determine the associated 
software development cost and schedule.  Physical source instructions 
include all instructions that require design, documentation, and test.  Debug 
statements emphasize the importance of this source instruction definition; for 
example, debug statements are formally designed, documented, and tested 
only if required by the development contract.  Non-required debug 
statements are a normal development product needed only to produce other 
source instructions.  Non-required debug statements are not designed, 
documented, or thoroughly tested; thus, they are excluded from the source 
line count.  

Resource estimates based on physical source lines for modified software, 
and systems containing reusable components, cannot account for the 
additional resource demands attributable to reverse-engineering, test and 
software integration.  The common method used to account for the added 
resource demands is to use the effective software size. 

6.4.1 Effective size as work 
Work is a useful and necessary concept when applied to defining 
effective size for cost calculation.  Development SLOC are 
numerically identical to physical source lines when the total 
software product is being developed from scratch or as new source 
lines.  Most software developments, however, incorporate a 
combination of new source code, existing code modified to meet 
new requirements, unmodified existing code, and off-the-shelf 
components.  Physical SLOC, as defined in this guidebook, do not 
relate directly to the development or effective size.  Effective size is 
larger than the actual change size; that is, development size is equal 
to, or greater than, the sum of new and modified source lines.  
Effective size is usually smaller than the total physical source lines 
in the software product or there would be no incentive to utilize 
reusable elements in software development. 

The molecular software view in Figure 6-4 illustrates the need for a 
mechanism to determine the effective software size (Se).  The ideal 

Well structured

Poorly structured

Intersegment binding

Code segment

 
 
Figure 6-4: Molecular view of software demonstrates the 

impact of structure on effective size 
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inter-molecular coupling between software elements, be they 
elements, segments, blocks, objects, or any other lumping, is loose.  
Loose coupling—the goal of structured design, object-oriented design, 
and most other design approaches—makes it possible to modify or 
insert elements without reverse-engineering or testing portions of the 
software system that are not to be modified.  The other coupling 
extreme (tight coupling) occurs in what we refer to as “spaghetti” 
code.  Tight coupling requires complete reverse-engineering and 
integration testing to incorporate even modest software changes. 

The relationship between size elements and the size adjustment factors 
is illustrated in Figure 6-5.  The shaded portion around the additions 
and modifications in the figure represent the software system areas 
that must be reverse-engineered, and tested, but are not modified. 

Effective task size must be greater than or equal to the number of 
source lines to be created or changed.  Modified software systems 
require accounting for the following cost impacts not present in new 
systems: 

1.   Modifications cannot be made to a system until the engineers and 
programmers understand the software to be modified.  If the 
original developer makes the changes, modifications are much 
simpler than if the developer is unfamiliar with the architecture and 
source code.  The software architecture determines the reverse-
engineering required to implement changes.  Clear, well-organized 
documentation also reduces the system learning curve and the required 
reverse-engineering.  The rationale for counting the total executable 
lines in a modified module (50-200 SLOC), instead of the few physical 
lines changed, is the effort impact of the change is much greater than 
the physical change unless the module is well structured and 
documented and the module is being modified by the originator. 

2. The effort required to implement (code) software modifications must 
include effort to correctly implement interfaces between existing 
software and the modifications.  This requires a level of knowledge in 
addition to that discussed in the first point. 

3. All software modifications must be thoroughly tested.  The test effort in 
utopian systems consists of testing no more than the software changes.  
In reality, total system regression tests are required prior to delivery to 
ensure correct software product performance.  It is virtually impossible 
to reduce integration and test requirements to include no more than 
software modifications. 

4. Although it is not obvious from the discussion to this point, the effective 
size must also be adjusted to account for the development environment; 
that is, the quality of the developer, experience with the software, and 
the experience with the development environment. 

Each of these four activities increases effective task size and is manifested as 
increased cost and schedule.  Major estimating systems increase 
development size to adjust for the added effort requirements.  COCOMO27

  

 
defines this adjustment term, the Adaptation Adjustment Factor (AAF), as: 

                                                 
27 Boehm, B.W. Software Engineering Economics Englewood Cliffs, NJ.: Prentice-
Hall, Inc., 1981. 

 Sold
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Stot = Sold + Snew
Schg = Snew + Smod  

 
Figure 6-5: Development effort required to 
incorporate changes to an existing software 

system includes efforts to produce Snew, Smod and 
integration effort in peripheral shaded areas 

Resource estimates based on 
physical source lines for 
modified software and systems 
containing reusable components 
cannot account for the 
additional resource demands 
attributable to reverse 
engineering, test, and software 
integration.  Effective size is the 
common method used to account 
for the added resource demands. 
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testimpdes FFFAAF 3.03.04.0 ++=   (6-3) 

where 

desF = the fraction (percent redesign [%RD], see Section 6.4.2.1) 
of the reused software requiring redesign and/or reverse-
engineering, 

impF  =  the fraction (percent reimplementation [%RI], see Section 
6.4.2.2) of the reused software to be modified, and  

testF  = the fraction (percent retest [%RT], see Section 6.4.2.3) of 
the reused software requiring development and/or 
regression testing. 

The simplified Jensen effective size28

testimpdes FFFSAF 35.025.04.0 ++=

 uses a similar adjustment equation, 
referred to as the Size Adjustment Factor (SAF): 

.  (6-4)   

Equation (6-4) places greater emphasis on the development cost and 
schedule impact of the test activity than the relative impact captured in 
Equation (6-3).  The 40-25-35 division of effort is consistent with historic 
data and closer to the traditional 40-20-40 division of the development effort 
heuristic.   

A simple example of the AAF factor in practice is as follows: 

Assume a software module containing 50 executable SLOC.  The 
original module was implemented by an outside organization.  The 
module’s internal algorithm is poorly structured and documented 
(normal), and lacking test data and procedures.  The module has been 
modified by a third organization.  The planned use of this module 
requires only small code changes to satisfy current system 
requirements.  Your use of this module will require reverse-
engineering (redesign), the modification is assumed to involve only 
10 percent of the module (reimplementation), and testing 
(modifications and regression).  The resulting values for the design, 
implementation, and test factors are essentially 1.0.  Thus, the AAF 
value is also 1.0. 

6.4.2 Effective size equation 
Effective size is generally defined by one of the two relationships used for 
computing the effective size or effective source lines of code (ESLOC).  The 
terms in the two relationships must satisfy the source code criteria.  

SAFSSSS reusedneweffective ++= mod   (6-5) 

where  newS  = new software SLOC,  
 modS = modified software SLOC,  

reusedS  = reused software SLOC, and 
 SAF = Size Adjustment Factor (Equation 6-4). 

                                                 
28 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology. 
Proc. of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers. 
Pacific Grove, CA. Nov. 17-19, 1980. 
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AAFSSSS reusedneweffective ++= mod   (6-6) 

The first equation (Equation 6-5) is used by all Jensen-based (Seer, SEER-
SEMTM and Sage) estimating tools. 

The second equation (Equation 6-6) is used by all COCOMO-based 
(COCOMO I, REVIC, COCOMO II) estimating tools. 

The effective size values computed by both methods are approximately 
equal.  The first equation is used for consistency in the software data 
collection form described in Appendix I.   

The following subsections explain the elements of the AAF and SAF 
equations in greater detail. 

6.4.2.1 Design factor 
The design factor Fdes is the ratio of the reverse-engineering effort of reusedS  
required for the software development to the amount of work that would be 
required to develop reusedS   from scratch.  A reasonable Fdes approximation 
can be obtained from the ratio of the number of routines (procedures, 
subroutines, etc.) to be reverse-engineered to the total number of routines in

reusedS .   

6.4.2.2 Implementation factor 
Implementing the software system changes in Figure 6-5 requires Snew + 
Smod be produced.  Additional effort must be added to understand the 
interfaces between the changes (enhancements and modifications) and

reusedS .  The extra effort includes establishing calling sequences, the number 
of parameters, the units assumed by each parameter, etc.  Thus, a reasonable 
value for Fimp is the ratio between the interface effort and the effort required 
to produce the interface definitions from scratch.  The interface effort is 
generally a small number (less than 10 percent). 

6.4.2.3 Test factor 
The Ftest factor is the ratio of the reusedS  test effort anticipated through 
acceptance of the upgraded software system to the effort required to test the 
reused code from scratch.  Regression tests (acceptance test, etc.) are 
necessary to ascertain correct system performance with the incorporated 
upgrade.  This reusable effort includes test and integration plans, procedures, 
data, and documentation.  

Example – Effective computation with reusable components 
Assume a reasonably well-structured software product is being 
upgraded by the original developer.  The product has the following 
size attributes and an average module size of 2,000 SLOC: 

Snew = 20,000 SLOC  (10 procedures) 
Smod = 40,000 SLOC  (20 procedures) 
Sreused = 100,000 SLOC  (50 procedures) 
 
Software reverse-engineered 
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 without modification   (10 procedures) 
 

Test effort (including test plan and procedure development), 
salvageable from previous product versions, is 25 percent of total test 
effort of Sreused.   The additional effort required to properly interface 
the software enhancements and modifications is 1 percent of Sreused. 

2.0
50
10

==desF  

01.0=impF  

Ftest = 1.0 – 0.25 = 0.75 

Se = 60,000 + 100,000 [0.4(0.2) + 0.25 (0.01) + 0.35 (0.85)] 

     = 94,500 ESLOC 

To demonstrate the effective size impact of developer software 
product experience, let us assume the original software product was 
poorly documented and built by a competing contractor.  To adjust 
for the increased reverse product engineering, we change the Fdes 
factor to 1.0 (reverse-engineer the entire product), and change Ftest to 
1.0 (no access to the original test material).  The resulting effective 
size is: 

Se = 60,000 + 100,000 [0.4(1) + 0.25 (0.01) + 0.35 (1)] 

        = 135,250 ESLOC 

The effective source increase due to lack of developer product 
familiarity is 40 percent over the original 94,500 ESLOC estimate 
due to environment changes.   

6.5 Size growth 
Some experts consider software code growth to be the single most important 
factor in development cost and schedule 
overruns.  Code growth is caused by a number 
of factors:  requirements volatility, size 
projection errors, product functionality changes, 
and human errors.   

Size projection errors come from many sources.  
Errors may stem from a lack of historical size 
data.  Errors can also arise from a need to keep 
the development cost low in order to obtain 
project funding or to submit a winning proposal 
by a contractor.  Size is the primary cost driver 
in the development estimate.  Figure 6-6 shows 
samples of size growth from several major 
software developments (represented by A – K on 
the x-axis).  The reasons for growth in these 
projects are not available, which complicates the 
development of any growth model. 

Size errors can also arise from lack of 
experience and the simple human limitations of 
the estimator.  One reason dates back to Greek mythology and the legend of 

 
Figure 6-6: Historic project data basis for growth algorithm 
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Pandora.  According to the myth, Pandora opened a jar (pithos) in modern 
accounts referred to as "Pandora's box", releasing all the evils of mankind— 
greed, vanity, slander, envy, lust— leaving only one evil inside once she had 
closed it again.  When Pandora opened the jar the second time, she 
unleashed the worst of all afflictions on the human race -- Hope.  Because of 
hope we don’t learn from our mistakes and, consequently, are forever cursed 
with unbounded optimism.   

Another reason is the human mind cannot wrap itself around a large number 
of independent objects.  Various sources place the limits anywhere from 7 
+/- 2 to as few as 3 +/- 2 objects.  Thus, details get buried or hidden in 
our projection of the software required to perform a complex task.  
Software size is almost always underestimated, and the magnitude of 
this underestimate is usually not trivial. 

There have been several studies on software code growth published 
during the past 15 years.  “Several” does not necessarily equate to 
enough.  The data from the most recent of these studies29

Watts Humphrey

  is typical for 
embedded software system development.  The growth range for these 
projects is between 81 percent and 238 percent.   

30

6.5.1 Maximum size growth 

, one of the driving forces behind the Capability 
Maturity Model (CMM), states that while there is no good data to 
support these figures, there are some practical estimating rules of 
thumb, which are shown in Table 6-1.  These rules are consistent with 
project data, and are reasonably good guidelines.  

Barry Holchin31

The region between the maximum and minimum complexity 
lines (Dmax and Dmin) represents the potential growth region, 
as shown in Figure 6-7.  The values of Dmax and Dmin are 15 
and 8, respectively.  The values are derived from the ratio of 
the development cost to the development time:    

, a well-known cost researcher and estimator, 
proposed a code growth model that is dependent on product 
complexity (D), project maturity, and the distribution of new 
and reused source code.  The Holchin model provides a 
mechanism to predict the physical (or total) growth during 
software development.  

3/ dd TcED =     (6-7) 

where  D = complexity, 
 c = scaling constant,  

Ed = development effort (person-years), and  
Td = development time (years).   
 

A low complexity (high D value) project allows higher 
staff levels to be applied to the development over a shorter period.  A high-
complexity project necessitates a smaller development team over a longer 

                                                 
29 Nicol, Mike. Revitalizing the Software Acquisition Process. Acquisition of 
Software Intensive Systems Conf. 28 Jan 2003. 
30 Humphrey, Watts. Managing the Software Process. Addison-Wesley. New York, 
NY: 1989. 
31 Holchin, Barry. Code Growth Study. 4 Mar. 1996. 

Table 6-1: Code growth by project phase 

Completed Project 
Phase 

Code Growth  
Range (Percent) 

Requirements 100-200 

High-Level Design 75-150 

Detailed Design 50-100 

Implementation 25-50 

Function Test 10-25 

System Test 0-10 

 
 

Figure 6-7: Modified Holchin growth algorithm 
(Both axes represent percentages)  
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period.  The complexity value 15 in the Sage, System Evaluation and 
Estimation of Resources Software Estimating Model SEER-SEMTM (now 
SEER for Software™), and SLIM® estimating tools equates to the 
complexity of a standalone software application that does not interact with 
the underlying operating system.  For example, the software (D =15) can be 
an accounting system.  A high-complexity project (D = 8) equates to an 
operating system development. 

The first step in the growth calculation is to establish the range of the growth 
factor (shown as D=12 in Figure 6-7) for the development under 
consideration.  The project complexity rating of 12 (a satellite ground 
station) represents an application with significant interaction with the 
underlying system.  The growth curve (shown as a dashed line) is calculated 
from the relationships: 

7/)8)(( min0max0min00 −−+= DCCCC              (6-8) 

7/)8)(( min100max100min100100 −−+= DCCCC           (6-9) 

where C0 =  0 end point of a desired growth curve for an assigned D 

 C0max = upper bound end point for software growth curve assuming 
               D range of 8 to 15 

 C0min = lower bound end point for software growth curve 

 C100 = 100 end point of a desired curve for and assigned D 

 C100max = upper bound end point for software growth curve 

 C100min = lower bound end point for software growth curve 

 

From an estimating point of view, the physical code growth is important, but 
not as important as the total size growth.  The Holchin model has been 
extended to project the growth in effective size necessary for development 
effort calculation.  The growth space is, graphically, the same as the space 
shown between D = 8 and D = 15 in Figure 6-7. 

Step two of the growth calculation accounts for the project maturity level.  
The maturity level adjusts the software growth to the current status of the 
software development.  The modified Holchin maturity table is shown in 
Table 6-2.  The maturity factor M is applied to the effective size growth 
equation:  

)100/0.1(*)(0.1 01000 MCCCh −−++=   (6-10) 

where  h represents the total relative code growth and  

M = the maturity factor value.   

As an example, if we assume the growth projection is being made at the time 
of the Software Requirements Review (D=12 @ SRR), the mean relative 
code growth of complexity is 1.16, or approximately 16 percent.  Maximum 
growth is 1.55.  This growth effect can be seen in Tables 6-3 and 6-4. 

The maturity factors shown graphically in Figure 6-7 are summarized for 
normal incremental complexity values for mean growth in Table 6-3 and 
Table 6-4 for maximum growth. 

Table 6-2: Modified 
Holchin maturity scale 

Maturity M 

Concept 0 

Source 15 

C/A 33 

SRR 52 

PDR 67 

CDR 84 

FQT 100 
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The third step in calculating growth projects the total size growth at the end 
of development from: 

0hSSTG =                 (6-11) 

where  STG  = total size with growth and  

S0 = projected size before the growth projections.   

The size growth projection at this point is for “total” source code size.  The 
size growth projection necessary for an estimate is based on the “effective” 
source code size.  In that regard, the growth must include not just physical 
growth, but the impact of the software modifications, reverse-engineering, 
regression testing, etc.  The effective size is given by: 

)35.25.4(.mod testimpdesreusedneweff FFFSSSS ++++=   (6-12) 

where  Fdes = relative design factor,  
Fimp = relative implementation factor, and  
Ftest = relative test factor.   

The new source code is specified by Snew, the modified source code by Smod, 
and Sreused specifies the reused source code value.   There are three more 
areas that will experience growth, from the effective size point of view: 

1. Reverse-engineering of the reused code to define modifications required 
by the new system; that is, reuseddesdes SFS 4.0= . 

Table 6-4: Maximum growth factors (h) for normal complexity values as a function of project maturity 

  Complexity  
Maturity M 8 9 10 11 12 13 14 15 Comments 
Concept 0 2.70 2.53 2.36 2.19 2.01 1.84 1.67 1.50 Start requirements 

Source 15 2.47 2.32 2.17 2.03 1.88 1.73 1.59 1.44 Source Selection (proposal complete) 

C/A 33 2.19 2.07 1.95 1.84 1.72 1.60 1.49 1.37 Start full scale development 

SRR 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29 Requirements complete 

PDR 67 1.66 1.60 1.54 1.48 1.42 1.35 1.29 1.29 Architecture complete 

CDR 84 1.40 1.36 1.33 1.30 1.26 1.23 1.20 1.16 Detail design complete 

FQT 100 1.15 1.14 1.14 1.13 1.12 1.11 1.11 1.10 Development complete  

 

Table 6-3: Mean growth factors (h) for normal complexity values as a function of project maturity 

  Complexity  
Maturity M 8 9 10 11 12 13 14 15 Comments 
Concept 0 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 Start requirements 

Source 15 1.43 1.39 1.34 1.30 1.26 1.22 1.17 1.13 Source Selection (Proposal complete) 

C/A 33 1.35 1.31 1.28 1.24 1.21 1.18 1.14 1.11 Start full scale development 

SRR 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09 Requirements complete 

PDR 67 1.19 1.18 1.16 1.14 1.12 1.10 1.09 1.07 Architecture complete 

CDR 84 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 Detail design complete 

FQT 100 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 Development complete  
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2. Interfaces to the modified code must be defined as a percentage of 
reusedimpimp SFS 25.0= . 

3. Regression testing of the reused code to assure proper performance of 
the upgraded system; that is reusedtesttest SFS 35.0= .  

The effective size growth can be approximated by applying the growth factor 
h to each of the three areas.  The effective size growth is then given by: 

)( mod testimpdesnewTE SSSSShS ++++=          (6-13) 

where  STE = effective size growth.   

6.6 Size risk 
The size values used in the software cost and schedule estimates are derived 
from a three-step process.  The process is defined as follows: 

1. Determine the baseline effective size value and the baseline size 
standard deviation.  The effective size estimating method is described in 
Section 6.4.  The nominal size value is the mean value of the skewed 
size distribution in Figure 6-8.  The “Baseline” size value (10 percent 
probability) is equal to the mean size value minus the mean size 
standard deviation.   The baseline size is generally computed directly 
from the CARD information. 

2. Estimate the maximum size growth (90 percent probability) 
that is approximated by “Max” in Figure 6-8.  The maximum 
growth value is determined from the developer capability, the 
maturity of the software product, the product complexity, and 
the reuse level of pre-existing source code.   

3. Determine the mean growth estimate that corresponds to the 
most likely size value in the cost and schedule estimates.  The 
baseline, mean and max size values are also used in the 
software risk analysis.  The growth estimating approach is 
described in greater detail in Section 6.6.1. 

6.6.1 Source code growth 
Source code growth is a significant factor in cost and schedule 
overruns in software development projects.  As introduced in 
Section 6.5.1, Holchin’s32

The most optimistic software development cost and schedule estimates are 
based on the effective software size discussed in Section 6.4.  The size 
growth Smax predicted by the extended model corresponds to the maximum 
size at 90 percent probability; that is, the maximum size has a 90 percent 
probability of being less than or equal to the maximum value.  The 
corresponding development cost and schedule represents a risk estimate 

 source code growth model bases 
physical code growth on software product complexity, product 
maturity, and software reuse level.  The Holchin model growth predictions 
are comparable to qualitative historical data.  The model described in this 
guidebook to project the effective code growth necessary for a realistic 
development cost and schedule estimate is an extension of the Holchin 
algorithm.   

                                                 
32 Holchin, B. Code Growth Study. Dec. 1991. 

 
Figure 6-8: Effective size growth distribution 
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assuming size growth only.  The maximum development impact corresponds 
to the maximum baseline size estimate with maximum growth. 

For practical purposes, we can view the skewed distribution in Figure 6-8 as 
a triangular size growth distribution to simplify the mean growth calculation.  
The error introduced by this assumption is negligible.  The mean growth size 
for the triangular distribution is given approximately by the equation: 

 Smean = 0.707Sbaseline + 0.293Smaximum   (6-14)  

From the Holchin model, we know that the amount of software growth is 
also a function of the software product maturity factor.  The growth factor 
decreases as the project maturity increases, as one would expect.  Project 
maturity defines the level of knowledge the developer has about the systems 
being developed.     

6.7 Function points 
FP analysis33

We need to be careful here to point out that there are many flavors of FP 
counting rules.  Classic FPs in this guidebook conform to the definition in 
the Function Point Counting Practices Manual, Release 4.2.  The ISO FP 
rules are derived from Release 4.1 of the FP manual.  3D FPs are an 
extension of the International FP Users Group (IFPUG) Release 4.1 
developed by Steve Whitmire

 is a method for predicting the total size of a software system.  
FPs measure software size by quantifying the system functionality provided 
to the estimator based primarily on the system’s logical design. 

34 of the Boeing Airplane Company for the 
7X7 aircraft series.  Feature Points were created by Capers Jones35

6.7.1 Function point counting 

 of 
Software Productivity Research for real-time and systems software.  There 
are other FP variations almost too numerous to mention.  This guidebook 
uses the IFPUG 4.2 rules and the 3D extension to briefly describe the use of 
FPs in software size estimation.   

The overall objective of the FP sizing process is to determine an adjusted 
function point (AFP) count that represents the functional size of the software 
system.  There are several steps necessary to achieve this goal.  The 
procedure is as follows: 

1. Determine the application boundary.  

2. Identify and rate transactional function types to determine their 
contribution to the unadjusted function point (UFP) count. 

3. Identify and rate data function types to determine their contribution to 
the UFP count. 

4. Determine the value adjustment factor (VAF).  This factor adjusts the 
total size to satisfy operational requirements. 

                                                 
33 International Function Point Users Guide. Function Point Counting Practices 
Manual: Release 4.2. IFPUG. Westerville, OH: 2004. (Release 4.2 makes it possible 
to correctly separate size and effort in an estimate.) 
34 Whitmire, S. 3D Function Points: Scientific and Real-Time Extensions to Function 
Points.  Proc. of the 10th Annual Pacific Northwest Software Quality Conference, 
1992. 
35 Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality. 
McGraw-Hill. New York NY: 1997. 

Function points measure the size of 
what the software does, rather than 
how it is developed and implemented. 

Carol A. Dekkers, 1999 
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5. Calculate the AFP count. 

A couple of basic terms, application boundary and transaction, apply to FP 
counting.   

The application boundary is an imaginary line that separates the application 
from its external environment.  Identification of component types for all 
dimensions depends on the proper placement of this line. 

A transaction is a group of data and operations defined by the application 
domain.  Transactions must have the property of crossing the application 
boundary.  Data in a transaction can flow either in one direction or both 
ways across the application boundary.  A unique transaction is identified by 
a unique set of data contents, a unique source and/or destination, or a unique 
set of operations. 

Since the rating of transactions and data functions is dependent on both 
information contained in the transactions and the number of files referenced, 
it is recommended that transactions be counted first.   

The UFP count is determined in steps 2 and 3 (which are discussed later in 
this section); it is not important if step 2 or 3 is completed first.  In graphical 
user interface (GUI) and object-oriented (OO) type applications, it is easier 
to begin with step 2.  

The AFP count is a combination of both the UFP count and the general 
system characteristics (GSC) adjustment which is discussed in Section 6.7.4.  
The AFP count is the adjusted total system size. 

6.7.2 Function point components 
This section introduces and describes the components utilized in FP analysis.  
There are seven components: 

1. Internal logical files (ILF) 
2. External interface files (EIF) 
3. External inputs (EI) 
4. External outputs (EO) 
5. External inquiries (EQ) 
6. Transforms (TF) 
7. Transitions (TR) 

The last two components (transforms and transitions) are used only by the 
3D FP-counting approach.   3D FPs are built upon a 3D model of software 
size.  The model was the result of research into the sizing concerns with 
development of database, scientific, and real-time applications.   

Tom DeMarco was the first to characterize software as having three 
dimensions:36

The control dimension is concerned with the state-specific behavior of the 
software system and includes issues such as device control, events, 
responses, and timeliness.  This leads to the need to consider the size of the 

 data, function, and control.  The size contribution of the 
function dimension is captured by the transform FP component.  For 
example, a weather prediction function has few inputs and outputs, small 
logical file requirements, and considerable mathematical computations (not 
adequately dealt with in traditional FP analysis). 

                                                 
36 DeMarco, Tom. Controlling Software Projects. Yourdon Press, 1982. 
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behavior-related (states and transitions) aspects of the system.  Examples of 
control dimension software are avionics and process control, neither of 
which is adequately covered in the classic FP (data) dimension. 

The FP approach described in this guidebook accurately represents the 
IFPUG 4.2 counting definition by ignoring the transform and transition 
components.  However, ignoring them will result in low FP counts for many 
applications covered by this guidebook. 

In addition, we must consider the application boundary, which is not a 
component, but an imaginary line that separates the elements to be 
developed, modified, and/or enhanced from the system elements that reside 
outside the project scope. 

There are some definitions necessary to help in rating the first five FP 
components: 

1. Record Element Type (RET) 
2. File Type Referenced (FTR) 
3. Data Element Type (DET) 
4. Processing Steps (PS) 
5. Semantic Statement (SS) 

All of the classic FP components are rated based upon 
RETs, FTRs and DETs.  As shown in Table 6-5, the 
transform component of the 3D FPs is rated according 
to the number of PSs and SSs.  The rating measures 
are described in detail in the sections associated with 
the component types. 

6.7.2.1 Application boundary 
Computer software systems typically interact with other computer systems 
and/or humans.  We need to establish a boundary around the system to be 
measured (sized) prior to classifying components.  This boundary must be 
drawn according to the sophisticated user’s point of view, as shown in 
Figure 6-9.  Once the border has been established, components can be 
classified, ranked, and tallied.  In short, if the data is not 
under control of the application or the development, it 
is outside the application boundary.  For business and 
scientific applications, this boundary is often the 
human-computer interface.  For real-time applications, 
the boundary can also be the interface between the 
software and those external devices it must monitor and 
control. 

The internal logical file (ILF) is the data contained 
entirely inside the system boundary and maintained 
through the application transactions.  ILFs define the 
internal data structure of the system to be developed.  
Data maintenance includes the addition, deletion, 
modification, or access by a transaction.  

  

Table 6-5: Function point rating elements 

Component RETs FTRs DETs PSs SSs 

Internal logical files ●  ●   

External interface 
files ●  ●   

External inputs  ● ●   

External outputs  ● ●   

External inquiries  ● ●   

Transforms    ● ● 

Transitions      

 

 
Figure 6-9: Function point system structure 
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In order to identify the application boundary, consider: 

• Reviewing the purpose of the FP count 
• Looking at how and which applications maintain data 
• Identifying the business areas that support the applications 

 
An external interface is data that is maintained by another application that is 
directly accessed by our software system without using the services of the 
external system.  Our software system may not modify the external data.  If 
the data is modified, the data is considered to be within the application 
boundary and part of our system. 

Under OO design and practices, external interfaces should not be used.  It is 
frowned upon to directly access data maintained by another application as it 
violates the principles of encapsulation and data hiding emphasized by 
software development best practices. 

The boundary may need to be adjusted once components have been 
identified.  In practice, the boundary may need to be revisited as the overall 
application is better understood.  Also, FP counts may need to be adjusted as 
you learn more about the application. 

6.7.2.2 Internal Logical File 
An ILF is a user-identifiable group of logically related data that resides 
entirely within the application boundary and is maintained through external 
inputs (EI); maintaining is the process of modifying data (adding, changing, 
and deleting) via an elementary process (namely an EI). 

Even though it is not a rule, an ILF should have at least one external output 
and/or external inquiry.  That is, at least one external output and/or external 
inquiry should include the ILF as an FTR.   Simply put, information is stored 
in an ILF, so it can be used later.  The external outputs (EO) or external 
inquiries (EQ) could be to/from another application.   

Again, even though it is not a rule, an ILF should also have at least one 
external input.  If an ILF does not have an EI, then one can ask where the 
information for the ILF comes from.  The information must come from an 
EI.  Understanding this relationship improves the thoroughness of the FP 
count. 

A DET is a unique user-recognizable, non-recursive (non-repetitive) field.  
A DET is information that is dynamic and not static.  A dynamic field is read 
from a file or created from DETs contained in an FTR.  Additionally, a DET 
can invoke transactions or be additional information regarding transactions.  
If a DET is recursive then only the first occurrence of the DET is considered, 
not every occurrence. 

An RET is a set of DETs that are treated by the software system as a group. 
RETs are one of the most difficult concepts in FP analysis to understand.  In 
a normalized data or class model, each data entity or class model will 
generally be a separate internal data structure with a single record type.  In a 
parent-child relationship, there is a one-to-one association.  

Most RETs are dependent on a parent-child relationship.  In this case, the 
child information is a subset of the parent information; or in other words, 
there is a one-to-many relationship.  For example, consider a warehouse 
stock display program.  One logical group may contain the stock inventory 
and a second logical group contains a detailed description of the stock items.  
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One configuration is linked by a key (stock item number) to the data 
contained in the two files.  Thus, the FP count produces 2 ILFs with 1 RET 
each.   

In an aggregation, or collection, data relationships exist between two or more 
entities.  Each entity is a record type and the entire relationship is considered 
a single internal logical file.  The aggregate structure requires a boundary 
around both groups.  Each group is considered to be a record type with a 
common internal data structure.  The aggregate structure yields a FP count of 
1 ILF and 2 RETs.  

ILFs can contain business data, control data, and rules-based data.  It is 
common for control data to have only one occurrence within an ILF.   The 
type of data contained in an ILF is the same type of data that is possible for 
an EI to contain. 

There are some special cases that need to be explained, Real Time and 
Embedded Systems and Business Applications.  Real Time and Embedded 
Systems, for example, Telephone Switching, include all three file types: 
Business Data, Rule Data, and Control Data.  Business Data is the actual 
call, Rule Data is how the call should be routed through the network, and 
Control Data is how the switches communicate with each other.  Like 
control files, it is common that real-time systems will have only one 
occurrence in an internal logical file. 

Another case includes Business Applications. Examples of 
business data are customer names, addresses, phone 
numbers, and so on.  An example of Rules Data is a table 
entry that tells how many days customer payments can be 
late before they are turned over for collection.  

Ranking: 

Like all components, ILFs are rated and valued.  The rating 
is based upon the number of data elements (DETs) and the 
record types (RETs). Table 6-6 lists the level (low, 
average, or high) that will determine the number of 
unadjusted FPs in a later step.  

Counting Tips: 
Determine the appropriate number of RETs first (Table 6-
7).  If all or many of the files contain only one record type, 
then all that is needed to be known is if the file contains more or less than 50 
DET’s.  If the file contains more than 50 data elements, the file will be rated 
as average.  If the file contains less than 50 data element 
types, the file will be considered low.  Any files that contain 
more than one record type can be singled out and counted 
separately. 

The relative size impact of each of the FP component types is 
summarized in Table 6-6.  If the component evaluation 
results in a low ranking, the total number of FPs is multiplied 
by the weight in the first ranking column.  For example, an 
evaluation produces 3 internal logical files for the 
application.  The number of unadjusted FPs corresponding to 
3 low ILFs is 21 (3 x 7) as shown in Table 6-8. 

Table 6-7: Ranking for Internal Logical and External Interface 
  Files 

 1-19 DETs 20-50 
DETs 51+ DETs 

1 RET Low Low Average 

2-5 RETs Low Average High 

6+ RETs Average High High 

 
 

Table 6-6: Table of weights for function point calculations 

Component Types 
Ranking 

Low Average High 

Internal Logical File 7 10 15 

External Interface File 5 7 10 

External Input 3 4 6 

External Output 4 5 7 

External Inquiry 3 4 6 

Transform 7 10 15 

Transition  3  
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Assume our ILF count process produces 3 low complexity ILFs, 5 average 
size ILFs and 1 high-complexity ILF.  The total ILF function points for the 
application will be 86 UFPs, as depicted in Table 6-8. 

6.7.2.3 External Interface File 
An EIF is a user-identifiable group of logically related data that resides 
entirely outside the application and is maintained by another application.  
The EIF is an ILF for another application, primarily used for reference 
purposes.  

Maintained refers to the fact that the data is modified through the elementary 
process of another application.  Values are updated as necessary.  An 
elementary process is the smallest unit of activity that has meaning to the 
user.  For example, a display of warehouse stock may be decomposed into 
several subprocesses such that one file is read to determine the stock on hand 
and another file is read to obtain a description of the stock.  The issue is the 
elementary process. 

6.7.2.4 External Input 
An EI is an elementary process that handles data or control information 
coming from outside the application boundary.  This data may come from a 
data input screen, electronically (file, device, interface, etc.), or from another 
application.  The primary intent of an EI is to maintain one or more ILFs 
and/or to alter the behavior of the system.  Calculated and stored values are 
external input data elements.  Calculated values that are not stored are not 
external input data elements.  Calculated values that are not stored have not 
crossed the application boundary and do not maintain an ILF.  Elements 
consist of data or control information.  The data, or control information, is 
used to maintain one or more internal logical files.  Control information does 
not have to update an ILF. 

It is common for information in GUI or OO environments to move from one 
display window to another.  The actual movement of data is not considered 
an external input because the data has not crossed the application boundary 
and does not maintain an ILF. 

An FTR is a file type referenced by a transaction.  An FTR 
must also be an ILF or an EIF. 

The external input ranking is defined in Table 6-9.  The total 
number of UFPs attributable to external inputs is obtained 
from Table 6-6 by ranking the EIs, adjusting the total of each 
ranked group by the EI weighting factors, and accumulating 
the EI subtotal (as in Table 6-8 for the ILFs). 

6.7.2.5 External Output 
An EO is an elementary process that sends derived data or control 
information outside the application boundary.  The primary intent of an 
external output is to present information (reports) to a user or output files to 

Table 6-8: Unadjusted function point calculation 

Element Types 
 Ranking  

Total 
Low Average High 

Internal Logical File 3 x 7 = 21 5 x10 = 50 1 x 15 = 15 86 

 

Table 6-9: Ranking for External Inputs 

 1-19 DETs 20-50 
DETs 51+ DETs 

0-1 FTRs Low Low Average 

2-3 FTRs Low Low High 

4+ FTRs Average High High 
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other applications.  An external output may also maintain one or more ILFs 
and/or alter the behavior of the system.  Since the information was inside the 
boundary, it must be contained in an ILF or EIF.   

Derived data is data that is processed beyond direct retrieval 
and editing of information from internal logical files or 
external interface files.  Derived data is the result of 
algorithms and/or calculations.   

The external output ranking is defined in Table 6-10.  The 
total number of UFPs attributable to external outputs is 
obtained from Table 6-6 by ranking the EOs, adjusting the 
total of each ranked group by the EO weighting factors, and 
accumulating the EO subtotal (as in Table 6-8 for the ILFs). 

6.7.2.6 External Inquiry 
An EQ is an elementary process with both input and output components that 
result in data retrieval from one or more internal logical files and external 
interface files.  This information must be sent outside the application 
boundary.  The processing logic contains no mathematical formulas or 
calculations, and creates no derived data.  No ILF is maintained during the 
processing, nor is the behavior of the system altered. 

The IFPUG definition explicitly states the information must be sent outside 
the application boundary (like an EO).  The movement outside the 
application boundary is important in OO applications because objects 
communicate with each other.  Only when an object actually sends 
something outside the boundary is it considered an external inquiry. 

It is common in the GUI and OO environments for an EO 
to have an input side.  The only distinguishing factor is that 
an EQ cannot contain derived data.  This characteristic 
distinguishes an EQ from an EO.   

The external inquiry ranking is defined in Table 6-11.  The 
total number of UFPs attributable to external inquiries is 
obtained from Table 6-6 by ranking the EQs, adjusting the 
total of each ranked group by the EQ weighting factors, 
and accumulating the EQ subtotal as in Table 6-8 for the 
ILFs. 

6.7.2.7 Transforms 
TFs involve a series of mathematical calculations that change input data into 
output data.  The fundamental nature of the data can also be changed as a 
result of the transformation.  New data can be created by the transform.  In 
simple terms, large computational elements are counted by transform FPs in 
scientific and engineering applications. 

Calculations in the real world are often constrained by conditions in the 
problem domain.  These conditions may constrain the possible values 
assumed by the input data or directly constrain the calculation process itself.  
These conditions take the form of preconditions, invariants, and post 
conditions attached to the transforms.  Alan Davis,37

                                                 
37  Davis, A. Software Requirements Analysis and Specification. Prentice-Hall, Inc. 
Englewood Cliffs, N.J.: 1990. 

 requirements 
management and software development researcher and professor, referred to 
the conditions as semantic statements.  The size of the transformation is 

Table 6-10: Ranking for External Outputs 

 1-5 DETs 6-19 DETs 20+ DETs 

0-1 FTRs Low Low Average 

2-3 FTRs Low Low High 

4+ FTRs Average High High 

 
 

Table 6-11: Ranking for External Inquiries 

 1-19 DETs 20-50 
DETs 51+ DETs 

1 FTR Low Low Average 

2-5 FTRs Low Low High 

6+ FTRs Average High High 
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determined by the number of processing steps in the mathematic language of 
the problem domain. 

TFs are ranked according to the number of processing steps contained in the 
TF and the number of semantic statements controlling them. 

An example of a TF is the set of calculations required to convert satellite 
position data into velocity and direction data.  The processing steps are: 

1. Calculate the change in longitude: 12 xxx −=∆  

2. Calculate the change in latitude: 12 yyy −=∆  

3. Calculate the direction of travel: 
y
x

∆
∆

= −1tanα  

4. Calculate the change in altitude: 12 zzz −=∆  

5. Calculate the distance in 2 dimensions: 22
2 yxd ∆+∆=  

6. Calculate the distance in 3 dimensions: 22
23 zdd ∆+=  

7. Calculate the elapsed time: stopstarte ttt −=  

8. Calculate the satellite velocity: etds /3=  

The satellite data transformation is subject to two preconditions: 

1. Latitude change: 0>∆y  and 

2. Elapsed time 0>et . 

The resulting TF rating is based on 8 processing steps and 2 semantic 
statements. 

The mathematical TF must not be confused with an 
algorithm.  An algorithm is a means of embedding a 
transform in an application, but can be used in other ways.  
Algorithms are a means of implementing decision processes.  
TFs always involve mathematics.  Another way of looking at 
the difference between algorithms and transforms is 
algorithms are described in terms of steps and decisions; a 
transform is always described in terms of calculations. 

The transform ranking is defined in Table 6-12. The total 
number of UFPs attributable to transforms is obtained from 
Table 6-6 by ranking the TFs, adjusting the total of each 
ranked group by the TF weighting factors, and accumulating 
the TF subtotal as in Table 6-8 for the ILFs. 

6.7.2.8 Transitions 
TRs are generated by external events to which the application must respond.  
The transition represents the event-response pair in the application model.  In 
other words, the transitions represent the behavior model and the control 
dimension of the application. 

The data dimension (files, inputs, outputs and inquiries) describes the 
structure of any given state and the domains from which the behavior is 
specified, but cannot describe the behavior of the application.  This 

Table 6-12: Ranking for Transforms 

 1-5 SSs 6-10 SSs 11+ SSs 

1-10 PSs Low Low Average 

11-20 PSs Low Low High 

21+ PSs Average High High 
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dimension is the domain for all 3D FP elements except for the TR 
component type. 

Events and responses are characteristics of the problem domain and are a 
dominant part of the system (application) requirements.  TRs are driven by 
the system requirements.  A requirements statement such as “When the 
target is within 30 yards, the system shall...” defines a state TR. 

A sample state-transition diagram is shown in Figure 6-10.  There are four 
distinct states and five unique transitions between states as seem in Figure 
6-10.  Each transition contains an event that triggers the transition and a set 
of responses activated by the event.  The responses can be sequential or 
concurrent.  Multiple events triggering the same response set are 
considered to be a single unique transition. 

The transition ranking is defined in Table 6-6.  The total number of UFPs 
attributable to transitions is obtained by multiplying the number of unique 
transitions by 3 (conversion of transitions to UFPs). 

6.7.3 Unadjusted function point counting 
The number of instances of a component type 
for each rank is entered into the appropriate 
cell in Table 6-13.  Each count is multiplied 
by the weighting factor given to determine the 
weighted value.  The weighted values in each 
of the component rows are summed in the 
Total column.  The component totals are then 
summed to arrive at the total UFP count. 

Remember, the UFP count arrived at in Table 
6-13 relates to the total functional size of an 
average software system with the 
requirements and structure defined by the FP 
count.  There have been no adjustments for 
the system type or processing requirements.  
In a real sense, we cannot distinguish between 
a data processing system and a real-time 
avionics system.  We cannot discern the 
difference between a system with a strong 
user interface requirement and a space payload.  What we do know is the 
system contains a certain average amount of functionality.  We have 
measured only the total system size.  The UFP number tells us nothing about 
the development or the operational environment. 

6.7.4 Adjusted function points 
AFPs account for variations in software size related to atypical performance 
requirements and/or the operating environment.  It is likely that the software 
system you are measuring will be larger than average when there are 
requirements for reusability or user support.  Consequently, there must be a 
corresponding adjustment to the total size projection to deal with this type of 
issue.  Predicting total size from a SLOC point of view automatically adjusts 
the size to deal with atypical conditions.  Atypical conditions are not 
accounted for in the UFP frame of reference.  Hence, there is a necessity to 
adjust the UFP count to compensate for these non-average requirements. 

There is a trend in modern software estimating tools to ignore the size 
adjustment in producing the software development cost and schedule 

IDLE

State 2

State 3 State 4

Event 1
Response

Event 2
Response

 
 

Figure 6-10: State transition model 

Table 6-13: Unadjusted function point calculation 

Component Types 
 Ranking  

Total 
Low Average High 

Internal Logical File __ x 7 = __ x10 = __ x15 =  

External Interface File __ x 5 =_ __ x 7 = __ x10 =  

External Input __ x 3 =_ __ x 4 = __ x 6 =  

External Output __ x 4 =_ __ x5 = __ x 7 =  

External Inquiry __ x 3 =_ __ x 4 = __ x 6 =  

Transform __ x7 =_ __ x10 = __ x15 =  

Transition  __ x 3 =   

Unadjusted Function Points  
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estimate.  The component-level estimating model (Appendix G) contains a 
set of factors that adjust the cost and schedule estimate to account for 
development environment variations with atypical requirements and 
constraints.  The primary argument against adjusting the FP size projections 
is that the cost and schedule impacts are already dealt with in the effort 
adjustments.  Herein lies the faulty assumption:  Adjustments are required in 
both size and effort.  More code (software) is necessary to implement user 
support features and more effort is required to design and test those features.   

6.7.4.1 Value Adjustment Factor 

The VAF is the mechanism used by the FP methodology to adjust software 
size projections for special requirements placed upon the software.  The 
adjustment is based on a series of general system characteristics 
(GSCs) that determine an overall VAF.  Combining the UFP total and 
the VAF produces the AFP value for the system.  There are 14 GSCs 
defined in Table 6-14 that rate the general functionality of the system 
and produce the software size projection.  The 14 GSCs can be 
evaluated early in the software development cycle since they are 
generally part of the software requirements.  

The impact (degree of influence) of each of the system characteristics 
is rated on a scale of 0 to 5 in response to the question in the general 
characteristic description.  The detailed definition of each 
characteristic is based on the IFPUG 4.2 guidelines.  The ratings are 
classified according to the information in Table 6-15.  

Table 6-14: General System Characteristics definitions 

No. General 
Characteristic Description 

1 Data communications How many communication facilities are there to aid in the transfer or exchange of 
information with the application or system? 

2 Distributed data 
processing 

How are distributed data and processing functions handled? 

3 Performance Did the user require response time or throughput? 

4 Heavily used configuration How heavily used is the current hardware platform where the application will be 
executed? 

5 Transaction rate How frequently are transactions executed daily, weekly, monthly, etc.? 

6 Online data entry What percentage of the information is entered online? 

7 End-user efficiency Was the application designed for end-user efficiency? 

8 Online update How many internal logical files are updated by online transactions? 

9 Complex processing Does the application have extensive logical or mathematical processing? 

10 Reusability Was the application developed to meet one or many user’s needs? 

11 Installation ease How difficult is conversion and installation? 

12 Operational ease How effective and/or automated are start-up, backup, and recovery procedures? 

13 Multiple sites Was the application specifically designed, developed, and supported to be installed 
at multiple sites for multiple organizations? 

14 Facilitate change Was the application specifically designed, developed, and supported to facilitate 
change? 

 

Table 6-15: General System Characteristic ratings 

Rating Definition (relative impact) 

0 Not present, or no influence 

1 Incidental influence 

2 Moderate influence 

3 Average influence 

4 Significant influence 

5 Strong influence throughout 
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To demonstrate use of the rating scheme, we have selected the 
Online Data Entry (GSC 6) characteristic.  The corresponding 
GSC 6 ratings are shown in Table 6-16.                                                                        

GSC items such as transaction rates, end user efficiency, on-
line update and reusability have higher values for user friendly 
(GUI) systems than for traditional systems.  Conversely, 
performance, heavily used configurations, and multiple site 
installations have lower GSC values for user friendly systems 
than for traditional systems. 

Once the 14 GSCs have been evaluated, the value adjustment 
factor can be computed using the following IFPUG VAF 
equation: 




















+= ∑

=
100/65.0

14

1i
iGSCVAF            (6-15) 

where  GSCi = degree of influence for each General System  Characteristic 
and 
i = 1 to 14 representing each GSC. 

The resulting GSC score is between 0.65 and 1.35 depending on the sum of 
the individual ratings. 

6.7.4.2 Adjusted function point calculation 
The AFP count is obtained by multiplying the VAF by the UFP count.  The 
standard AFP count is given by: 

UFPVAFAFP ×=               (6-16) 

where  AFP = Adjusted Function Point count, 
 VAF = Value Adjustment Factor, and 

UFP = Unadjusted Function Point count. 

6.7.5 Backfiring 
The vast majority of widely used software estimating tools are based on 
SLOC for predicting development effort and schedule.  Function points, 
albeit a viable total software size estimating approach, are not directly 
compatible with the algorithms used by these tools.  Note that some of these 
tools do allow the input of function points as a size measure, but internally 
convert function points to SLOC before the cost and schedule are estimated.  
Research into conversion factors between function points and SLOC have 
been conducted by several researchers, the most comprehensive of these 
studies was published by Capers Jones38

                                                 
38 Jones, Capers. Applied Software Measurement. McGraw-Hill Inc. New York, NY: 
1991. 

 in 1991.  Table 6-17 contains a 
commonly used subset of the language conversions listed by Capers Jones.  
The SLOC/FP and range data listed here is a compendium of the data 
published by the various researchers.  The table listing correlates well with 
the Capers Jones data. 

Table 6-16: Online Data Entry rating definitions 

Rating Definition 

0 All transactions are processed in batch mode 

1 1% to 7% of transactions are interactive data entry. 

2 8% to 15% of transactions are interactive data entry 

3 16% to 23% of transactions are interactive data 
entry 

4 24% to 30% of transactions are interactive data 
entry 

5 More than 30% of transactions are interactive data 
entry 
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The data in the table illustrates the relative efficiencies of modern 
programming languages.  For example, the ratio of macro assembler to C++ 
is 213/55 = 3.87 showing the size advantage of C++ over assembler is nearly 
4:1.  The ratio suggests a large cost advantage in the use of high-level 
languages.  

Please note the wide range for each of the SLOC/FP ratios in the table.  
Using the backfiring techniques to obtain equivalent source code size values 
will not yield precise SLOC counts.  Also remember the backfiring 
process does not produce the “effective” source code size used in cost 
and schedule estimates.  The backfire process produces a total functional 
size estimate that assumes no software reuse or COTS use.  

The conversion of function points (UFP or AFP) to equivalent total SLOC is 
accomplished with the equation: 

BFAFPSt ×=        (6-17) 

where  St = total software SLOC count, 
AFP = Adjusted Function Point count, and 

 BF = SLOC/FP conversion factor from Table 6-17. 

The AFP value yields the most rational conversion to source lines of code. 

6.7.6 Function points and objects 
3D FP sizing (introduced in Section 6.7.2) and object sizing are essentially 
identical technologies.  At a high level, applications and objects have the 
same FP component properties.  Applications have internal data, contain 
mathematical transforms, and have externally observable behavior.  
Applications are made from lower-level objects that can be either concurrent 
or contained within other objects.  To understand this concept, we must map 
the FP components to the features of a class.   

To perform the mapping, establish the boundary of the class as you would a 
FP application.  Anything that crosses the object (class) boundary is an input, 

Table 6-17: FP to SLOC conversion 

Language SLOC/FP Range  Language SLOC/FP Range 

Ada 95 49 40-71  JOVIAL 107 70-165 

Assembler, Basic 320 237-575  Object-oriented 29 13-40 

Assembler, Macro 213 170-295  Pascal 91 91-160 

BASIC, ANSI 32 24-32  PL/I 80 65-95 

C 128 60-225  PROLOG 64 35-90 

C++ 55 29-140  CMS-2 107 70-135 

COBOL (ANSI 95) 91 91-175  3rd generation 80 45-125 

FORTRAN 95 71 65-150  4th generation 20 10-30 

HTML 3.0 15 10-35  Visual Basic 6 32 20-37 

JAVA 53 46-80  Visual C++ 34 24-40 

 



75 
 

output, or inquiry.  A message that passes information into the object and 
triggers a state change is an input.  A message that is produced by the class is 
an output.  A message that causes the object to return information about its 
state without causing the object to change state is an inquiry. 

The object’s static internal structure describes the properties of the object 
and represents the possible states the object can assume.  Grady Booch,39

Objects can contain mathematical transformations.  Not all objects contain 
TFs.  Some are purely algorithmic in nature.  The objects that do contain 
mathematical TFs are identified as transformers or converters. 

 
software designer and methodologist, says, “The state of an object 
encompasses all of the properties of the object plus the current values of 
each of the properties.”  The structure of the object’s state space is its 
internal data structure.  As a minimum, an object contains at least one record 
type, that of the state representation.  The properties of the state are the 
record data element types. 

Objects generally exhibit an external behavior.  The way an object reacts to 
an external event (message) is dependent upon the contents of the message 
and the current state of the object.  All objects exhibit some sort of behavior.  
The transitions of the behavior model are the transitions in the FP domain. 

3D FPs can be applied directly in OO software where the boundary is drawn 
around the application level.  At this level, 3D FPs measure the function 
delivered, not necessarily the functionality developed. 

6.7.7 Zero function point problem 
A new development can be specified using a FP approach and/or a SLOC-
based approach.  We can also specify the size of new functionality within an 
existing system in terms of FPs, but we most often use SLOC to measure 
modification of existing functionality.   When the estimate is for extension of 
an existing system, the size specification generally becomes more complex.  
Care must be taken to ensure that the portions specified using FPs do not 
overlap the portion expressed in SLOC and that the system development is 
completely covered by the composite of the two approaches. 

The major issue with using FPs in this situation is called “the zero function 
point problem.”  When using the FP sizing approach, an issue arises when a 
portion of the software is being modified without adding to or changing the 
system functionality.  The FP concept allows for specification of the total 
system development size only.  The size of added system functionality is 
only a problem of defining the application boundary for the development.  
FPs do not attempt to represent development effort; thus, there is no 
mechanism for dealing with modifications, deletion, regression testing, and 
reverse-engineering effort.  

The zero FP issue can only be dealt with through the effective SLOC.  The 
effective size can be specified as: 

SAFSSSS reusedFPeff ++= mod   (6-18) 

where  SFP is the adjusted FP count converted to SLOC through the 
backfiring technique and  

SAF is the Size Adjustment Factor defined in Equation (6-4).   
                                                 
39 Booch, G. Object-Oriented Analysis and Design With Applications, Second 
Edition. Benjamin-Cummings, 1994. 



76 
 

In the SLOC coordinate system, the development effort for the modifications 
and reused software can be computed.  This approach requires the FP 
approach be limited to the new development size projection and the SLOC-
based approach be used for modification and reuse portions of the software 
product.   
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Section 7  
Productivity Factor Evaluation 

7.1 Introduction 
The system-level estimating process, considered a first-order model, 
introduced in Section 4 is the simplest of the software estimating models.  
The model consists of a productivity factor (PF) multiplied by the software 
product effective size to obtain the development effort.  The production units 
(size) can be effective source lines of code (ESLOC), function points, object 
points, use cases, and a host of other units as long as the PF units match the 
production units.  The development effort can be a person-hour (PH), 
person-month (PM), or any other unit corresponding to the unit measure of 
the PF.  For the purpose of this introductory discussion, we will use effective 
source lines of code (ESLOC) as the production unit measure and PH per 
effective source line of code as the productivity measure.  This can be stated 
as:  

ekd SCE =      (7-1)  

where  dE  is the development effort in PH, 

 kC  is a productivity factor (PH/ESLOC), and 

 eS  is the number of ESLOC.   

The PF is commonly determined by the product type, historic developer 
capability, or both, derived from past development projects.  As simple as 
this equation is, it is widely used to produce high-level, rough estimates.   

As an example, the development effort for a military space payload with Se = 
72 KESLOC, and a PF of 55 lines per person-month (ESLOC/PM).  Note 
that a month is assumed to be 152 hours by most estimating tools.  The hours 
per ESLOC value is simply: 

PF = 55 ESLOC/PM * (PM/152 PH) 
     = 0.362 ESLOC/PH 
     = 2.76 PH/ESLOC 
 
Ed = 2.76 PH/ESLOC * 72000 ESLOC 
     = 198,720 PH 
     
198,720 PH * PM/152 PH = 1,307 PM  

or 







 ÷=

PM
ESLOC

PM
PH

ESLOC
PH 5515276.2          (7-2) 

The development effort for this project is then 198,720 PH or 1,307 PM.   

The utility of the first-order model is that it can be used early in the 
development process (typically before Milestone A) before the software 
system architecture is established and the software components defined.  The 
model is also valuable where there is little or no knowledge available of the 
developer or the developer’s environment.  The first-order model assumes a 

There is no single development, in either 
technology or management technique, 
which by itself promises even one order-of-
magnitude improvement within a decade in 
productivity, in reliability, in simplicity. 

 

Frederick P. Brooks, Jr. 
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generic, or average, software development organization and no special 
constraints on the software product.  A reasonable ballpark estimate can be 
created quickly to support rough cost planning. 

The Ck value depends on the product type.  The product type is generally 
obtained from historical data or from productivity tables.  Product types are 
divided into 13 categories in the guidebook productivity tables to provide 
meaningful PFs for these types of systems.  The product characteristics for 
each class are typical for the product category.  Additional system types can 
be covered by selecting the closest approximation to the given product type. 

One weakness of the first-order model is its insensitivity to the magnitude of 
the effective product size.  Productivity is, or at least should be, decreased 
for larger projects.  The tables included in this section partially compensate 
for the system size issue.  Interpolation between specific size values in the 
tables refines the PF values. 

Once a reasonable PF value has been selected from the table, it is a simple 
matter to multiply the PF by the estimated effective size to obtain a total cost 
or effort estimate for the project.  The tables in this section assume an 
average development organization operating in a normal environment.  
Subjective adjustments can be made to the factors to compensate for 
application experience (and so forth) if supported by historic project data. 

7.2 Determining productivity factor 
Typically, for estimating purposes, a PF is chosen based on historical data 
from similar past development efforts.  The historic factor is calculated by 
dividing the total development effort (in PM) by the total effective size of 
the software, in ESLOC or thousand source lines of code (KESLOC), to 
obtain the PF (PM/ESLOC).  Inverting the PF yields the familiar 
ESLOC/PM productivity metric.  It is worth stressing that these productivity 
values include all software development activities from design through 
software component integration.  
 
By collecting several data points from a development organization for a 
specific product type, an average PF can be computed that will be superior to 
the factors tabulated in this section.  Collecting several data points of 
different project sizes will produce a size-sensitive productivity relationship.  
Table 7-1 shows some typical productivity values for various software 
application types.   
 
The productivity figures in Table 7-1 can be converted from effective source 
lines per person month to person months per thousand lines (KESLOC) to 
satisfy the first-order model calculations in Equation (7-1).  The results of 
the conversion are contained in Table 7-2 repeated here for convenience.  A 
similar table extracted from the QSM database by McConnell is contained in 
McConnell’s Software Estimation40

                                                 
40 McConnell, S. Software Estimation. Microsoft Press Redmond, WA: 2006. 

.   
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Table 7-2: Typical productivity factors (PM/ KESLOC) by size and software type 

Software Type D 10 
KESLOC  

20 
KESLOC 

50 
KESLOC 

100 
KESLOC 

250 
KESLOC  

Avionics 8 12.6 14.5 17.4 20.0 24.0 

Business 15 2.1 2.4 2.9 3.3 4.0 

Command and Control 10 6.3 7.2 8.7 10.0 12.0 

Embedded 8 9.0 10.4 12.4 14.3 17.2 

Internet (public) 12 2.1 2.4 2.9 3.3 4.0 

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0 

Microcode 4-8 12.6 14.5 17.4 20.0 24.0 

Process Control 12 4.2 4.8 5.8 6.7 8.0 

Real-time 8 12.6 14.5 17.4 20.0 24.0 

Scientific Systems/ 
Engineering Research  12 2.5 2.9 3.5 4.0 4.8 

Shrink-wrapped/ Packaged  12-15 2.1 2.4 2.9 3.3 4.0 

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0 

Telecommunication 10 6.3 7.2 8.7 10.0 12.0 

 

Table 7-1: Typical productivity factors (ESLOC/PM) by size and software type  
and stated complexity (D) value  

Software Type D 10 
KESLOC  

20 
KESLOC 

50 
KESLOC 

100 
KESLOC 

250 
KESLOC  

Avionics 8 79 69 57 50 42 

Business 15 475 414 345 300 250 

Command and Control 10 158 138 115 100 83 

Embedded 8 111 97 80 70 58 

Internet (public) 12 475 414 345 300 250 

Internet (internal) 15 951 828 689 600 500 

Microcode 4-8 79 69 57 50 42 

Process Control 12 238 207 172 150 125 

Real-time 8 79 69 57 50 42 

Scientific Systems/ 
Engineering Research 12 396 345 287 250 208 

Shrink wrapped/ 
Packaged  

12-
15 

475 414 345 300 250 

Systems/ Drivers 10 158 138 115 100 83 

Telecommunication 10 158 138 115 100 83 

 
Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures for 
Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five Core. 
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7.2.1 ESC metrics 
The USAF Electronic Systems Center (ESC) compiled a database41

The ESC categorization follows the reliability definitions posed by Boehm in 
Software Engineering Economics; that is, grouping according to the 
following reliability categories

 of 
military projects developed during the years 1970-1993 containing 29 
development projects.  The projects included development data from 91 
Computer Software Configuration Items (CSCIs) divided into three 
categories based on software reliability requirements.  The projects and 
CSCIs are not grouped in the same way as the Software Type categories in 
Tables 7-1 and 7-2.  Care should be taken when using the ESC data outside 
the domains represented in the ESC database. 

42

 
: 

Very low The effect of a software failure is simply the 
inconvenience incumbent on the developers to fix the 
fault.  Typical examples are a demonstration prototype of a 
voice typewriter or an early feasibility-phase software 
simulation model. 

Low The effect of a software failure is a low level, easily 
recoverable loss to users.  Typical examples are a long-
range planning model or a climate forecasting model. 

Nominal The effect of a software failure is a moderate loss to users, 
but a situation from which one can recover without 
extreme penalty.  Typical examples are management 
information systems or inventory control systems. 

High The effect of a software failure can be a major financial 
loss or a massive human inconvenience.  Typical examples 
are banking systems and electric power distribution 
systems. 

Very high The effect of a software failure can be the loss of human 
life.  Examples are military command and control systems, 
avionics, or nuclear reactor control systems. 

 
Each project contains CSCIs with different ratings.  Each CSCI within a 
project is required to interface with one or more additional CSCIs as part of a 
composite system.  The interaction includes both internal interfaces as well 
as interfaces to external systems.  The number of integrating CSCIs is 
defined as the total number of CSCIs in the project.  ESC formed three 
categories based on the number of integrating CSCIs and the required 
reliability level for their productivity analysis, as shown in Table 7-3.   

                                                 
41 AFMC Electronic Systems Center. “Cost Analysis: Software Factors and 
Estimating Relationships.” ESCP 173-2B. Hanscom AFB, MA: 1994. 
42 Boehm. B.W. Software Engineering Economics.  
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Productivity and the associated factors for the three project categories are 
consistent with the information in the PF tables.  An interesting note on the 
ESC productivity analysis shown in Table 7-4 is the narrow range of the 
productivity data for each category.  Standard deviations for the three 
categories—even ignoring the project size and development environment—
are very low. 

The 91 CSCIs contained in the ESC data, analyzed in terms of development 
personnel, show the impact of development capability on productivity.  The 
results of the productivity analysis are shown in Table 7-5.  The results do 
not exactly match those given in Table 7-4 because the project categories 
contain a mix of CSCI categories; that is, a Category 3 project may contain 
Category 1, 2, and 3 CSCIs.  In any case, the productivity variation across 
the personnel capability range is significant and should be considered when 
selecting a PF for an estimate. Note the information contained in Tables 7-1 
and 7-2 include personnel of all capability levels. 

Table 7-4: Productivity for military applications by category 

Project Type 
Productivity 
(ESLOC/PM) 

Productivity 
Factor  

(PM/KESLOC) 

Productivity 
Range 

(ESLOC/PM) 

Standard 
Deviation 

(ESLOC/PM) 

All programs 131.7 7.60   

Category 1 195.7 5.10 116.9 – 260.8 49 

Category 2 123.8 8.08 88 – 165.6 23.6 

Category 3 69.1 14.47 40.6 – 95.2 16.5 

 

Table 7-5: Productivity for military applications by category as a function 
of personnel capability 

Personnel 
Category 1 

(ESLOC/PM) 
Category 2  

(ESLOC/PM) 
Category 3 

(ESLOC/PM) 

Above average 265.2 165.5 91.0 

Average 177.9 141.6 45.4 

Below average No data 101.2 41.5 

Total 216.1 134.3 53.9 

 

Table 7-3: Definition of complexity/reliability categories 

 Integrating CSCIs 

Reliability 0- 6 
CSCIs 

7-10     
CSCIs 

> 10  
CSCIs 

Very high 
(Public safety required) 

Category 2 Category 3 Category 3 

High 
(Major financial loss) 

Category 2 Category 2 Category 3 

Very low - Nominal  
(Moderate loss) 

Category 1 Category 1 No Data 
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7.2.2 Productivity index 
The Quantitative Software Management (QSM) Software Lifecycle Model 
(SLIM®) introduced in Section 4 is the prime example of use of a PF and of 
a second-order estimating model.  The general form of the SLIM® software 
equation is: 

3/43 TKCS ke =      (7-3) 

where  K    = the total life cycle cost (person-years),  

kC = a PF relating cost and schedule to the effective size, and 

 T    = the full-scale development schedule (years)  

A second commonly used measure of developer capability is the Putnam 
Productivity Index (PI)43,44

kC

 implemented in the SLIM® Estimating Suite.  
The Putnam software equation defined in Equation (7-3) uses a software PF 

 to equate the development cost and schedule to the effective software 
size.  The Putnam PF is conceptually equivalent to the effective technology 
constant defined in Table 7-6.  The SLIM®

kC  range is from approximately 
750 to 3,500,000.  To simplify the use of the PF a new variable known as the 
PI was created.  The PF range, indicated as PI, is from 0 to 40.  The 
relationship between kC  and PI is approximately: 

 PI
kC )272.1(7.600≅      (7-4) 

The relationship between the productivity index and the PF can easily be 
visualized from the data in Table 7-6. 

The PI value contains the impacts of product characteristics and the 
development environment, as well as the domain experience and capability 
rating for the organization much like the effective technology constant 
discussed in Section 5.4.5.  PI also subsumes the application complexity 
impact and the effects of software reuse; that is, the impacts of reverse 
engineering and regression testing are contained in the PI value. 

Since the PI value is conceptually closer to the effective technology 
constant, the typical range of PI values must be specified for each domain 
or application type, as shown in Table 7-7.  Note that a positive PI change 
of three points represents a doubling of the process productivity.   

The PF Ck is approximately double the effective technology constant 
(Section 5.4.5) Cte value for realistic Ck values.  The estimating model in 
Section 5 includes the effects of development environment on the 
development effort (see Equation [5-1]).  Assuming a product environment 
penalty of 2 units (that is, 2=∏

i
if ), the basic technology constant tbC  

defined in Section 5.4.4 is roughly equal to kC .  The practical upper basic 
technology constant limit of 20,000 places PI values of 13 or greater at risk 
in terms of achievable productivity.  For example, a software development of 
50,000 source lines with a PI value of 14 yields a predicted full-scale 
development productivity of 750 lines per person month. 

                                                 
43 Putnam, L.H., and W. Myers. Measures of Excellence. Prentice-Hall, Inc. 
Englewood Cliffs, NJ: 1992. 
44 Putnam, L.H., and W. Myers. Five Core Metrics. Dorset House Publishing. New 
York, NY: 2003. 

Table 7-6: Relationship between 

kC  and PI values 

PI kC  PI kC  

1 754 11 8,362 

2 987 12 10,946 

3 1,220 13 13,530 

4 1,597 14 17,711 

5 1,974 15 21,892 

6 2,584 16 28,657 

7 3,194 17 35,422 

8 4,181 18 46,368 

9 5,186 19 57,314 

10 6,765 20 75,025 
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Productivity index data corresponding to the PI values in 
Table 7-7 are strongly skewed toward the Low PI value.  For 
example, projects in the business domain typically have a 
productivity value on the order of 300-400 lines per PM.  The 
Low PI value corresponds to a productivity of about 400 lines 
per month.  The High PI value corresponds to a productivity 
of approximately 6,500 lines per month.  Extrapolating, a 
50,000 source line project could be completed in only 8 PM, 
according to Table 7-7.   

There is an important qualifier for the upper reaches of the 
Putnam productivity index that is important.  Most software 
development projects consist of CSCIs of 30,000 ESLOC or 
more.  A small project ranges from 5,000 to 15,000 effective 
source lines; the achievable productivity can reach significant 
values that cannot be attained in larger projects.  In this special 
case, PI values of 11 or 12 are reasonable.  The reason for this 
extension is the small size of the development team that can 
work closely to produce the product.  Products with significant 
performance requirements are not likely to reach these values. 

The productivity rates presented in Table 7-1 are typical for common project 
types.  A complexity (D) value column was added to the table to show the 
relationship between the software type and complexity.  Complexity is 
defined and discussed in Section 10.1.  It is interesting to note the 
productivity rate achieved for each of the software types tends to group 
around the associated complexity value.  Less complex product types (higher 
D value) have higher productivity for each project size group.   

The project size category also tells us about the size and character of the 
project team.  A 10 KESLOC project will likely be developed by a small 
team, probably a total of 10 or fewer members (including test and integration 
personnel).  The system defined by the project will only consist of one or 
two CSCIs.  The development team (programmers, integrators) will be about 
five people in a normal environment.  Projects of this size are at the lower 
limits of the data defining the widely used software cost estimating tools.  
Productivity is very high because of the ability of the development team to 
communicate and work together. 

7.3 System-level estimating 
System-level cost estimates, using either the PF model or the ESC model, 
can quickly produce credible ballpark estimates.  Note: quickly does not 
equate to simply.  The key to system-level estimating is the realism of the 
effective size projection, which is not always a simple task.  Take the 
following as an example: 

Given an avionic system upgrade consisting of a 1,000 ESLOC 
modification and an 834 function point (adjusted) addition.  The 
implementing programming language is C++.  The avionic system 
required reliability is at the “loss of human life” level.  The required 
effort for the upgrade using Equation (7-1) will be: 

2.678)834*55000,1(*47.14 =+=dE PM                  (7-5) 

according to the ESC model tabulated in Table 7-4.  The 46,870 
effective size is close to the 50,000 source line column in Table 7-2.  
The avionics system PF of 11.76 for the extended McConnell approach 

Table 7-7: Typical PI ranges for major application types 
from the QSM database 

Domain Low PI High PI 

Business 12 21 

Scientific 10 20.5 

System 4 15 

Process control 10 17.5 

Telecommunications 8 14 

Command and Control 7.5 14 

Real time 5 13 

Avionics 3.5 14.5 

Microcode 3.2 9.2 
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yields an effort of 551.2 PM, which is lower than (but reasonably close 
to) the ESC model results.   

There are NO useful methods to project a development schedule at the 
system level unless the system can be developed as a single CSCI.  If the 
system can be built as a single CSCI, the schedule can be approximated by 
an equation of the form: 

3*5.3 dd ET ≅ months    (7-6) 

where Td  is the development time (months), and 

 Ed is the development effort (PM). 

Remember, the results are only as accurate as the estimating model which, in 
turn, is only as accurate as the underlying data.  The estimates are totally 
independent of the development environment since we have no knowledge 
of the product characteristics or of the developer contracted to build the 
system.  We are also working with an estimated size which may (probably 
will) grow between this estimate and the final product.
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Section 8  
Evaluating Developer Capability  

One of the most important steps in developing a software cost and/or 
schedule estimate is the establishment of the software developer’s capability 
rating.  The value of this rating changes slowly over time, if it changes at all.  
There are two primary variables in the capability rating: (1) the capability of 
the analysts and programmers, and (2) the level of experience in the 
application domain of the project being estimated.   

The first variable that has the greatest impact and changes very slowly is the 
capability of the analysts and programmers, while the second variable, 
domain experience, is more likely to change over time and defines the 
organization’s principle product lines.   

The developer, in the context of this guidebook, is the development 
organization, which is made up of analysts (software engineers), 
programmers, and managers.  The developer resides in physical facilities and 
uses development resources that relate to the developer’s normal way of 
doing business.  The developer’s normal way of doing business can be 
visualized as the developer’s culture.  Culture implies a level of usage that 
transcends experience, or the developer would not think of using any other 
tool or practice.    

When evaluating an estimate, the first question one asks is “What 
productivity is this organization capable of achieving?”  The developer 
capability rating defines organization productivity without the load imposed 
by the project or product constraints. 

8.1 Importance of developer capability 
Developer capability measures the efficiency and quality of the development 
process and is one of the two most significant cost and schedule drivers.  The 
second and most important driver is the effective size of the system 
described in Section 6.   

The system-level estimating model described in Section 4 contains a 
constant productivity factor kC (person hours per equivalent source line of 
code) that assumes an average capability and organization efficiency as well 
as an environment and product characteristics consistent with the application 
type.  The only way we can include organization efficiency is by deriving the 
productivity factor from historic data collected for a specific organization 
and product type.   

The component-level estimating model extends the productivity factor to 
include the impacts of the developer and development environment on 
organization efficiency.  This model provides the only mechanism to account 
for the significant cost drivers: people, environment and product type. 

The inherent developer capability is the most significant factor that 
determines an organization’s productivity.  The major attributes of a 
developer capability rating are: 

• Problem solving or engineering ability 
• Efficiency and thoroughness 

What we can or cannot do, what we 
consider possible or impossible, is rarely a 
function of our true capability. It is more 
likely a function of our beliefs about who 
we are.  

Tony Robbins 
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• Ability to communicate and cooperate 

8.2 Basic technology constant 
There are a total of about 35 characteristics that are useful in determining the 
impact of the product and the development environment on the ultimate 
project development cost and schedule.  The 35 characteristics essentially 
define the productivity factor. Six of those characteristics are useful in 
quantitatively determining the “raw” capability of a software development 
organization.  The characteristics are: 

• Analyst, or software engineer, capability (ACAP) 
• Programmer, or coder, capability (PCAP) 
• Application experience (AEXP) 
• Use of modern practices (MODP) 
• Use of modern development tools (TOOL) 
• Hardcopy turnaround time (TURN) 
 

The term raw capability isolates the undiluted developer performance from 
the effects of the product and the environment that reduces the overall 
project productivity.  For example, separating the development team across 
multiple development sites reduces productivity due to communication 
difficulties across the sites.  The basic technology measure eliminates the 
degradation by focusing on an ideal set of project conditions.   

The basic technology constant (Ctb) is a measure of 
organizational capability in a specific application area.  
The measure was first implemented in the Seer estimating 
model in the late 1970s.  Since that time, the measure has 
achieved widespread acceptance and is used in several 
software estimating tools.  An organization’s basic 
technology constant is relatively stable (steady) over time, 
making it useful as an organization capability measure.  
The constant is domain (product)-specific. 

The range of values for the measure is from 2,000 to 
20,000, as shown in Figure 8-1.  An organization with the 
2,000 rating is incompetent, unmotivated, has a Capability 
Maturity Model Integration (CMMI) Level 1 process 
rating, uses software development tools from the 1960s, 
and operates on a remote computing system.  The 
organization has no interactive communication capability.  
This is a true “Dark Age” development organization.  As 
bleak as Dark Age sounds, there are still organizations 
with basic technology ratings in the low 2,200s. 

The high end of the Ctb range is a “projected” value of 20,000.  Such an 
organization would be highly motivated and working in a team environment 
with free, direct communication between team members.  The organization 
would be a CMMI Level 5 entity; that is, one that is fully involved with the 
principles and philosophy of continuous process improvement.  The 
organization would use modern management and development tools and 
practices as a matter of culture.  Computing resources are instantaneous and 
within easy reach. 

The typical basic technology constant range today is between 5,500 and 
7,500 as shown in Figure 8-2.  There are a few organizations with basic 

 
Figure 8-1: Basic technology constant range 
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technology ratings in the 8,000 to 9,000 range.  The 
significance of the ratings above 8,000 is these organizations 
are led by managers who practice Theory Y management45.  
The highest data point was achieved in a variation of the Skunk 
Works©46

The mean value of the basic technology constant distribution 
has changed little over the last 25 years, in spite of dramatic 
changes to the software development technology.  From a 
productivity point of view, the shift of less than 15 points per 
year is discouraging as can be seen in Figure 8-2.  From an 
estimating point of view, this is good because the project data 
that underlies almost all software estimating tools is still current and the 
tools are stable.  An important observation is “culture is constant.”   
Estimating templates created for organizations 20 years ago are generally as 
valid today as they were then. 

 environment (detailed in Section 8.3.3.1). 

Another indication of developer capability stability is 
shown in Figure 8-3.  Productivity data from the 1960s 
through the 1990s indicates a slow but steady growth in 
productivity of about 1 line per PM per year for 
Department of Defense (DoD) projects, in spite of the 
introduction of several major language and technology 
changes.  Each technology listed in Figure 8-3 was 
introduced with the promise that productivity would 
increase an order of magnitude and errors would 
disappear.  Some improvements were expected because 
technology improvements do have a positive effect on 
productivity.   

Since the basic technology constant is relatively stable 
over a long period of time, it is useful to build a library of 
technology-constant data for each organization as developing estimates.  The 
process simplifies estimating because the parameters in the basic technology 
constant are the most difficult to obtain without some calibration using 
completed projects.  The parameter values in the basic constant can be 
validated through post-mortem analysis to increase confidence in the data. 

8.2.1 Basic technology constant parameters 

8.2.1.1 Analyst capability 
The major attributes of the analyst capability rating are: 

• Analysis or engineering ability 
• Efficiency and thoroughness 
• Ability to communicate and cooperate 

These attributes are of roughly equal value in the evaluation.  The evaluation 
should not consider the level of domain experience of the analysts.  The 
experience effects are covered by other factors.  The evaluation should be 
based on the capability of the analysts as a team rather than as individuals.  
The capability rating can be outlined as: 

                                                 
45 Hersey, P., and K.H. Blanchard. Management of Organizational Behavior, 
Utilizing Human Resources. Prentice-Hall, Inc. Englewood Cliffs, NJ: 1977. 
 
46 © 2005, Lockheed Martin Corporation 

 
Figure 8-2: Basic technology constant distribution 2005 

 

62005500 6500

Basic Technology Constant

9000

20051980

62005500 6500

Basic Technology Constant

9000

20051980

Figure 8-3: Productivity gains from 1960 to present 

1960              1970              1980           1990 

100 
90 
80 
70 
60 
50 

OOD 

Structured Analysis 
Structured Design Process Maturity 

PWB 
Structured Programming 

3rd Generation Languages 

Ada 
P 
R 
O 
D 
U 
C 
T 
I 
V 
I 
T 
Y 

LPPM Year 
1960              1970              1980           1990 

100 
90 
80 
70 
60 
50 

OOD 

Structured Analysis 
Structured Design Process Maturity 

PWB 
Structured Programming 

3rd Generation Languages 

Ada 
P 
R 
O 
D 
U 
C 
T 
I 
V 
I 
T 
Y 

 Year 



88 
 

• Motivation 
• Use of team methods 

o Communication ability 
o Cooperation 

• Working environment 
o Noise level 
o Individual working (thinking) space 
o Proximity of team members 

• Problem-solving skills 
• Software engineering ability  

This working definition is compatible with the major attributes specified (at 
the beginning of this section) and focuses on the attributes that have the 
greatest impact on software cost and schedule. 

Motivation, use of team methods, and working environment underscore the 
importance of management and communication in the capability rating.   

The first step of the capability evaluation categorizes the organization’s 
management style as either Theory X or Theory Y47

1. Work is inherently distasteful to most people.  

.  Theory X assumes the 
organization (or at least the project manager) attitude toward the project 
personnel can be described as:  

2. Most people are not ambitious, have little desire for responsibility, 
and prefer to be directed. 

3. Most people have little capacity for creativity in solving 
organizational problems.  

4. Most people must be closely controlled and often coerced to achieve 
organizational objectives. 

 Theory Y, which is diametrically opposed to Theory X, assumes:  

1. Work is as natural as play, if conditions are favorable. 

2. Self-control is often indispensable in achieving organizational goals.  

3. The capacity for creativity in solving organizational problems is 
widely distributed in the population.  

4. People can be self-directed and creative at work if properly 
motivated. 

Theory X is often referred to as a directing management style, while Theory 
Y is a leading style.  The Theory Y management style is easily ascertained 
by interview with the software development staff.  Projects managed by 
leaders are typified by high motivation and morale.  Although most 
managers claim to practice participative management (leading), numerous 
research studies indicate that authoritarian (directing) management styles 
were predominant in software development organizations. 

The ACAP rates the personnel who are responsible for the front end or high 
level design elements of the software development.  These people are usually 

                                                 
47 Hersey, P., and K.H. Blanchard. Management of Organizational Behavior: 
Utilizing Human Resources. Prentice-Hall, Inc. Englewood Cliffs, NJ: 1977. 

Never tell people how to do 
things. Tell them what to do 
and they will surprise you 
with their ingenuity. 

George S. Patton, Jr. 

Not every group is a team, 
and not every team is effective 

              Glenn Parker 
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classified as software engineers or system analysts.  The 
rating is related to the analyst team performance as shown in 
Table 8-1.  The rating description focuses on motivation and 
team performance which are the major drivers in the rating.   

Note that “team” combines the impact of the physical 
environment with the ability to communicate effectively48

A group of software engineers located in an individual 
cubicle environment cannot work together due to the limited 
communications allowed; thus, the highest rating possible in the ACAP 
ratings is a traditional software organization (1.0).  Section 8.4 explains in 
detail the communication issues, how to rate the communications ability of 
the software development team, and the impact of the development 
environment on communications and the capability ratings. 

.  
A team, according to Webster’s dictionary, is a group of 
people working together.  If physical or management 
communication barriers exist, a team cannot form.  A group 
of people assigned to a common project does not define a 
team.   

An understanding of communication dynamics is essential to the correct 
evaluation of personnel capability, both analyst (software engineer) and 
programmer. 

8.2.1.2 Programmer capability 
The PCAP rates the programming team performance as 
shown in Table 8-2.  The rating criteria are the same as 
those used in the ACAP rating.  The people evaluated in 
the PCAP rating are the implementers (coders, 
programmers, etc.) of the software product. 

If the same group of people design the software 
architecture and implement the solution, you would expect 
the ACAP and PCAP ratings to be identical.  However, it is 
possible that the group is great at design and poor at 
implementation, or vice versa.  In that case, evaluate the 
ratings accordingly.  

8.2.1.3 Application domain experience 
Domain experience is the measure of the knowledge and experience the 
software team has in a specific application area.  The measure is one of 
effective team experience and will be described in greater detail in Section 
8.2.1.5.  In essence, effective experience has much to do with the ability to 
communicate within the team as a whole.   

Lack of experience has multiple effects on the ability to produce a product.  
Not knowing what to do is one example.  Another, recovering from false 
starts during the definition and implementation phases, also multiplies the 
lack of productivity.  Greater experience allows the development team to 
leverage knowledge and gain greater efficiencies.   The relative productivity 
swing due to experience alone is approximately 50 percent. 

                                                 
48 Communication issues are discussed in detail in Section 8.5 
 

Table 8-2: Programmer capability ratings 

PCAP – Programmer Capability 

Value Description 

0.70 Highly motivated AND experienced team organization 

0.86 Highly motivated OR experienced team organization 

1.00 TRADITIONAL software organization 

1.17 Poorly motivated OR non-associative organization 

1.42 Poorly motivated AND non-associative organization 

 

Table 8-1: Analyst capability ratings 

ACAP – Analyst Capability 

Value Description 

0.71 Highly motivated AND experienced team organization 

0.86 Highly motivated OR experienced team organization 

1.00 TRADITIONAL software organization 

1.19 Poorly motivated OR non-associative organization 

1.46 Poorly motivated AND non-associative organization 
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8.2.1.4 Learning curve 
The learning curve phenomenon is a factor in each of the five experience 
ratings: application experience (AEXP), development system experience 
(DEXP), programming language experience (LEXP), practices and methods 
experience (PEXP) and target system experience (TEXP).   

Section 8 is only concerned with the effort impact of the application 
(domain) experience rating as part of establishing the developer’s basic 
capability including current experience levels and learning curves.  The bulk 
of the experience ratings with the learning curve effects are individually 
discussed in Section 9. 

The effects of the learning curve are observable in three areas: 

• An initial penalty determined by the magnitude of technology 
change. 

• A maximum learning rate that is controlled by the complexity of the 
application, process, or system. 

• The mastery cost will equal a priori49

remains unchanged. 
cost if process efficiency 

The a priori cost represents the hypothetical cost, or productivity, 
in the absence of any penalty due to the introduction of a new 
application area.  Over time, the impact of the new discipline will 
decrease until the area is mastered as illustrated in Figure 8-4.  The 
mastery cost is not always equal to the a priori cost.  The mastery 
cost can be lower if the ending capability is more efficient than the 
a priori capability. The learning curve penalty is always measured 
at the start of development.   

The five identified learning curve experience parameters are 
distinguished by two variables, years and complexity.  The first 
variable is the number of years of experience.  The second variable 
is the type or complexity of the language or system.  The resulting 
combination of the two variables donates the relative impact. 

The effective average experience of the team is an important concept in 
calculating the cost impact of the experience parameters.  Average 
experience is the simple arithmetic average experience measured over the 
number of software development team members.  If the team members are 
isolated from each other by placing the members in separate offices or 
cubicles, they have no opportunity to leverage their learning and experience 
with the result that the experience rating cannot be better than a simple 
average.  If you place the team members in an environment where the 
members can leverage their experience, the result is an effective experience 
level that is closer to that of the most experienced member.  For example, 
place an expert in a work area supporting free communications with the 
requirement that the sole purpose of the expert is to support a group of 
inexperienced developers.  Let the work area be a Skunk Works™.  Does the 
group of developers function as though the group had the experience 
approaching that of the expert?  The relative experience value between a 
simple average and the expert is almost solely dependent on the quality of 
communications. 

                                                 
49 Proceeding from a known or assumed cause to a necessarily related effect. 

 
     

Figure 8-4: Learning curve impact 
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No matter what the problem is, it’s 
always a people problem 

G.M. Weinberg, 1988 
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8.2.1.5 Domain experience rating 
Application experience rates the project impact 
based upon the effective average application 
experience for the entire development team.  
Applications are divided into three categories 
based upon the task complexity.  The categories 
are: (1) low complexity – application has little or 
no interaction with the underlying operating 
system, (2) medium complexity – some 
interaction with the underlying operating system, 
as might be found in a typical C2 or C4I system, 
and (3) high complexity – major interaction with 
the underlying operating system such as a flight 
control system.  

Development effort penalties—as a function of 
application complexity and average team domain 
experience—are shown in Figure 8-5.  Note the 
penalty can be less than one (a priori level) 
indicating a productivity gain for teams with 
greater experience.  This is one example where 
the post-mortem productivity is higher than the a 
priori productivity.   

8.2.1.6 Modern practices 
The Modern Programming Practices (MODP) rating, 
shown in Table 8-3, is one of the more difficult 
environment evaluations.  The MODP rating establishes 
the cultural level of modern development methods use in 
the organization at the start of the full-scale software 
development (Software Requirements Review).  Cultural 
use level defines the level of practice that is the de facto 
development standard; that is, the methods and practices 
that are used by default in the development.  There are 
other parameters in the environment evaluation that 
account for less experience with the practices (e.g., 
development system experience, practices experience).  
Allowing non-cultural ratings in this parameter evaluation 
creates double-counting issues.  Most project managers 
claim (at least) reasonable experience in most modern 
practices.  Only demonstrated successful practices use is 
allowed in the evaluation.  Some of the practices 
considered in this rating are: 

• Object-oriented analysis and design 

• Structured design and programming 

• Top down analysis and design 

• Design and code walkthroughs and inspection 

• Pair programming 

Note that the list does not include development systems, compilers, etc.  
These facilities are accounted for in the TOOL rating.  

There have been a large number of studies and papers written which cite 
large productivity gains due to adoption of modern development practices.  It 

 
Figure 8-5: Impact of Application Experience on software product 
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  Table 8-3: Traditional use of modern practices rating 

MODP – Use of Modern Practices 

Value Description 

0.83 Routine use of ALL modern practices 

0.91 Reasonable experience in MOST modern practices 

1.00 Reasonable experience in SOME modern practices 

1.10 EXPERIMENTAL use of modern practices 

1.21 NO use of modern practices 
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is difficult to isolate the gains to the modern practices 
from the gains of other factors such as better personnel, 
better development tools, improved management 
approaches, better environments, etc.   

CMMI levels improve the development process in two 
significant ways.  The first is increased productivity as 
the organization moves from Level 1 to Level 5.  The 
gain isn’t as significant as often advertised, but is better 
than zero.  The second main effect is narrowing the 
productivity dispersion so the cost and schedule of a 
development are much simpler to project from 
historical data.  The data shows the trend toward higher 
CMMI ratings over the 15-year period contained in the 
report.  In the late 1980s, the DoD issued a statement 
that contracts would not be issued for organizations 
with less than a Level 3 rating.  It is interesting to note 
that Figure 8-6 shows the trend hits a wall at Level 3 
(Defined).  Also note in 1987 that 99% of the measured 
organizations (the yellow line labeled 99) were at Level 
3 or below, whereas only 94% were at that level or 
below in 2002. 

The difficulty in evaluating the MODP rating can 
be eliminated, or at least reduced, by approaching 
the measure from another more stable metric, as 
shown in Table 8-4.  The Software Engineering 
Institute/CMMI rating can be used as a modern 
practices measure that removes much of the 
wrangling from the evaluation process.  There is 
strong correlation between the CMMI level and the 
measurable modern practices rating.  Note that 
once the organization reaches Level 3, further 
productivity improvement does not materialize 
until after process data has been collected and used 
for process optimization/improvement.  This 
improvement may not occur for some years after 
the Level 5 process maturity has been achieved.  
Ratings above the “reasonable experience in some 
modern practices” are not realistic until gains in 
previous projects can be demonstrated.  There are 
few Level 5 organizations that can justify the 
improvement needed for the highest two ratings.  
Note the strong correlations between CMMI and the MODP productivity 
tables. 

8.2.1.7 Modern tools  
The automated tool support parameter (TOOL) indicates the degree to which 
the software development practices have been automated and will be used in 
the software development.  Tools and practices not considered to be part of 
the development culture are not considered.  The list of tools and criteria 
shown in Table 8-5 can be used to aid in selection of the appropriate value. 

 

 

 

Table 8-4: Relationship between CMMI and MODP ratings 

MODP – Use of Modern Practices 

CMMI 
Definition 

CMMI 
Level 

Value Description 

Optimizing 5 0.83 Routine use of ALL modern 
practices 

Managed 4 0.91 Reasonable experience in MOST 
modern practices 

Defined 3 1.00 Reasonable experience in SOME 
modern practices 

Repeatable 2 1.10 EXPERIMENTAL use of modern 
practices 

Initial 1 1.21 NO use of modern practices 

 
 
 
   

 
 

Figure 8-6: CMMI Rating improvement over the  
period 1987 to 2002 
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Table 8-5: Modern tool categories and selection criteria 

 

It is common to have tool support with elements in 
more than one category.  In rating the automated 
tool environment—which likely has tools from 
more than one category—judgment is necessary to 
arrive at an effective level of tool support.  The 
judgment should also assess the quality and degree 
of integration of the tool environment.  The rating 
value should be selected from the Table 8-6 
category that best describes the development 
environment. 

8.2.2 Basic technology 
constant calculation 
The basic technology constant (Ctb) describes the developer’s raw capability 
unimpeded by the project environment.  The basic technology constant was 
derived by fitting historic project data to the Jensen model (Sage, Seer, and 
SEER-SEMTM) cost and schedule equations.  However, the measure is 
equally valid as a capability measure for the COCOMO family of estimating 
tools, even though the measure is not automatically produced in these tools 
(except for REVised Intermediate COCOMO [REVIC]).  The resulting basic 
technology constant equation is: 

Very Low Level of Automation (circa 1950+)  Low Level of Automation (circa 1960+) 
Assembler 
Basic linker 
Basic batch debugging aids 
High level language compiler 
Macro assembler 

Overlay linker 
Batch source editor 
Basic library aids 
Basic database aids 
Advanced batch debugging aids 

Nominal Level of Automation (circa 1970+)  High Level of Automation (circa 1980+)  
Multi-user operating system 
Interactive source code debugger 
Database management system 
Basic database design aids 
Compound statement compiler 
Extended overlay linker 
Interactive text editor 
Extended program design language 
Source language debugger 
Fault reporting system 
Basic program support library 
Source code control system 
Virtual operating system 

CASE tools 
Basic graphical design aids 
Word processor 
Implementation standards enforcer 
Static source code analyzer 
Program flow and test case analyzer 
Full program support library with configuration 
    management (CM) aids 
Full integrated documentation system 
Automated requirement specification and analysis 
General purpose system simulators 
Extended design tools and graphics support 
Automated verification system 
Special purpose design support tools 

Very High Level of Automation (circa 2000+)  
Integrated application development environment 
Integrated project support  
Visual programming tools 
Automated code structuring 
Automated metric tools 
GUI development and testing tools 
Fourth Generation Languages (4GLs) 
Code generators 
Screen generators 

 

Table 8-6: Use of automated tools support rating 

TOOL – Automated Tool Support 

Value Description 

0.83 Fully integrated environment (circa 2000+) 

0.91 Moderately integrated environment (circa 1980+) 

1.00 Extensive tools, little integration, basic maxi tools (circa 
1970+) 

1.10 Basic mini or micro tools (circa 1960+) 

1.24 Very few primitive tools (circa 1950+) 
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The productivity factor for Jensen-based models is the effective technology 
constant (Cte) defined in Equation (5-5).  This equation combines the basic 
technology constant with the product of the development environment 
factors if .  The resulting productivity factor is: 
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8.3 Mechanics of communication 
Teams do not function well without effective communication.  Two 
questions to consider in evaluating communication ability are: (1) Does the 
development area design support free communication between team 
members? and (2) Are tools in place to support discussion?  

Broadly defined, communication means: the act or process of 
communicating.  It is a process in which information is exchanged 
between individuals using a common system of symbols, signs, or 
behavior.  The related definition of collaboration is to work jointly with 
others or together, especially in an intellectual endeavor.  Both elements 
are necessary to effectively produce a software product. 

Communication or information transfer is one of the most important 
considerations in the world of productivity improvement.  It dominates a 
large percentage of the time devoted to software development whether 
information is transferred via reports, analysis, problem resolution, or 
training.  Several studies suggest that the time spent in some form of 
communication exceeds 33 percent of a programmer’s work day.  
Improved productivity, therefore, relies on the effective and efficient transfer 
of information.  

The effectiveness of voice or visual radiation is supported by a well-
known research study by Mehrabian and Ferris.50

The effectiveness of the information transfer, however, is diminished when 
we remove any source of information radiation.  For example, we can 
remove the visual part of the transfer by forcing the communicators to use a 

  According to 
Mehrabian and Ferris, 55 percent of information in presentations is 
transferred by body language (i.e. posture, gestures, and eye contact), as 
shown in Figure 8-7.  Thirty-eight percent of the information is 
transferred through vocal tonality (i.e. pitch, volume, etc.), and 7 percent 
of the information transferred comes from the words, or content, of the 
presentation.  These results are hardly surprising given that our body cues 
often convey the meaning of our words.  For example, we all express 
many different meanings of the word “no” in normal conversation 
without giving much thought to the tone and body language 
accompanying the word.  

                                                 
50 Mehrabian, A., and S.R. Ferris. “Inference of Attitudes from Nonverbal 
Communication in Two Channels.” Journal of Counseling Psychology, Vol. 31, 
1967. 

Figure 8-7: Components of communication 
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Five Commandments for a Highly 
Productive Environment 

 
I. Thou shalt not construct 

communication barriers. 
II. Thou shalt dedicate the project 

area. 
III. Thou shalt not interfere with the 

project space. 
IV. Thou shalt provide utensils for 

creative work. 
V. Thou shalt not share resources. 

 
 
 



95 
 

telephone.  This eliminates all of the gestures, body language, and eye 
contact from the conversation.  These important radiation sources are no 
longer available to reinforce understanding between the two individuals and 
can lead to gaps in communication, as well as misunderstandings.  For 
example, we may change our language style when talking on the phone.  
This could lead to an inference of disinterest, which seeing body language 
would dispel.  People cannot see you nod your head in agreement on the 
telephone.   

The information transfer is further diminished by using e-mail instead of 
vocal conversation.  We eliminate the subtle elements of the conversation 
radiated by volume and tone such as sarcasm or disappointment.  Think of 
the times you may have called or been called by someone about a date or an 
appointment and they make an excuse about not being available.  The loss of 
vocal tone may cause you to miss the “get lost” message they are trying to 
convey.    

Information transfer is significantly degraded when we rely solely on paper 
because we remove the ability to ask and respond to clarifying questions.  
We lose not only the subtle elements of voice communication, but also the 
real-time elements necessary for feedback between one another.   Feedback 
may still be present, but at a much slower rate.  This impairs the integrity or 
accuracy of the feedback as well.   

Some suggest that the solution to communication barriers is modern 
technological, such as e-mail and network communications.  These solutions 
are often proposed for local communication support and to justify remote 
software development teams.  Ironically, this technological solution raises 
greater barriers than the cubicle example.  At least people in adjacent 
cubicles have some physical contact.  Remote locations are sometimes 
separated by thousands of miles.  The loss of visual and voice radiation, as 
well as real-time responsiveness, creates a virtual wall. 

8.3.1 Information convection 
A good analogy for describing communication flow in a development 
environment was introduced by Alistair Cockburn51

Information flow can also be blocked by a draft, which is a way of 
describing unwanted or irrelevant information in our metaphor.  A draft can 
be discussion of a topic not related to the project that is loud or obtrusive 
enough to disturb the other members of a team. 

 in 2002.  “Convection 
currents” of information move about a work area just like the movement or 
dispersion of heat and gas.  Air moves freely through an area unless the air is 
blocked or diverted by an obstruction.  Information moves in precisely the 
same fashion.  When two programmers are seated at adjacent desks, they can 
discuss mutual problems freely, and information flows unobstructed between 
the two people.  The information flow, however, decreases as the 
programmers’ separation distance increases.  If a barrier or wall, real or 
perceived, is placed between the programmers, the information flow is 
further attenuated, except for the information dispersion that occurs over the 
wall.  If the programmers are placed in private offices, the information flow 
is blocked and becomes zero.   Thus, instead of having the feeling of a team 
effort, the programmer’s attitude becomes “I do my part and then throw it 
over the wall.” 

                                                 
51 Cockburn, A.  Agile Software Development. Addison-Wesley, New York, NY: 
2002. 

Companies that sensibly manage 
their investment in people will 
prosper in the long run. 

  Tom DeMarco and Tim Lister 
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8.3.2 Radiation 
As previously mentioned, radiation occurs either aurally or visually.  
Radiation can also occur, on a smaller scale, from touch and smell.  
Information can also radiate from dry erase boards, paper, posters, sticky 
notes, and pictures.  Because we want to maximize the amount of useful 
information being conveyed, we will discuss the optimal ways that 
information is radiated.  

The optimal source of radiation communication is both vocal and visual.  
Voical and visual communication is radiated by expression, gestures, pitch, 
volume, inflection, exaggerations, and movement.  Two people discussing a 
problem at a dry erase board or at a computer terminal exemplify this ideal 
situation.  This source of radiated information is optimal because of the 
response time between the speaker’s statements and the listener’s responses.  
The real-time nature of the conversation allows instantaneous questions to 
remove any misunderstandings and to clarify statements and questions. 

8.3.3 Communication barriers 
As explained, walls impede the flow of information.  Consequently, walls 
decrease productivity.  This impediment includes both visible and invisible 
walls.  Assume a large open area filled with workstations that are spaced 10 
feet apart front-to-back and side-to-side.  People can move freely about the 
workspace.  Since they are not totally enclosed, communication between 
individuals in this matrix should be reasonably unimpeded52

We raise invisible walls if we alternate rows in this matrix with personnel 
from another project.  This spacing causes the distance between related 
people to increases from 10 to 20 feet.  This increased spacing between 
members of the development team decreases information flow.  Thus, the 
presence of unrelated people forms a literal wall that impedes the 
information flow.  The same effect can be achieved by randomly placing 
people from a second project in the work area of another project.  The 
information radiated by people from the unrelated second project creates 
what Cockburn referred to as drafts, a flow of unwanted information. 

.  This was the 
original cubicle concept.  

The optimum information flow communication concept suggests a seating 
arrangement that increases information flow while discouraging drafts.  The 
project area should be arranged so that people are sitting within hearing 
distance while limiting information not helpful to them (drafts).  You can 
develop a sense for this as you walk around the development area. 

It is difficult to establish analyst and programmer capability ratings higher 
than “traditional” in the presence of an environment that does not foster 
effective communications. 

8.3.3.1 Skunk Works 
A classic example of effective information convection is the Lockheed 
Skunk Works™, primarily because it dispenses with both physical and non-
physical walls.  The Skunk Works was an unofficial name given to the 
Lockheed Advanced Development Projects Unit managed by Kelly Johnson, 
designer of the SR-71 strategic reconnaissance aircraft.   The most successful 

                                                 
52 Becker, F., and W. Sims. Workplace Strategies for Dynamic Organizations, 
Offices That Work: Balancing Cost, Flexibility, and Communication. Cornell 
University International Workplace Studies Program,  New York, NY: 2000. 
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software organizations have followed this paradigm in the organization of 
their development teams and environments. 

As a generic term, “skunk works” dates back to the 1960s.  The common 
skunk works definition is: a small group of experts who move outside an 
organization’s mainstream operations in order to develop a new technology 
or application as quickly as possible, without the burden of the 
organization’s bureaucracy or strict process application.  Conventional skunk 
works operations are characterized by people who are free thinkers, creative, 
and who don’t let conventional boundaries get in the way (Theory Y).  The 
skunk works workspace is a physically open environment that encourages 
intra-team access and communication.  Tools and processes are tailored and 
adapted to the project’s requirements.  Kelly Johnson established 14 Basic 
Operating Rules53

8.3.3.2 Cube farm 

 to minimize development risk while maintaining the 
greatest possible agility and creativity in a lean development team.  The rules 
covered everything from program management to compensation and are 
relevant for any advanced research unit within a larger organization.  

A counter-example to the Skunk Works™ approach to software development 
is the common cube farm.  The cube farm violates all of the rules for a 
productive environment in terms of both communication and collaboration 
primarily because they raise all the barriers that block effective 
communication.  Unfortunately, the cube farm is the most common, or 
widely used, software development environment.  Probably 90 to 95 percent 
of the development organizations operating today work in cube farms. 

8.3.3.3 Project area 
Reiterating the concepts explained above, a physical project area should be 
allocated for a specific development task and not shared by multiple 
projects.  From the standpoint of information convection, all of the 
information moving about the development area should be related to the 
same software development activity.  Mixing projects in a specified area 
creates drafts.  Dedicating a specific project area places all of the 
development personnel in close proximity with as few sources for drafts as 
possible.  Adding people from non-related projects also separates project-
related people thereby limiting the information flow and inhibiting 
discussion and collaboration.   

Another side effect of an undedicated project area is that the presence of 
people from another task prevents the team from forming into a focused, 
cohesive unit.  An extreme view of this phenomenon occurs when the project 
area is a general software engineering area accommodating multiple 
projects.  Project teams never form in this situation.   

8.3.4 Utensils for creative work 
We have learned from experience and research that communication and 
collaboration are key elements in productivity and quality improvement.  
Our earlier discussion about information convection and radiation suggests a 
set of low-tech utensils are best for creative work.  These utensils include: 

 

                                                 
53 Rich, Ben R., and L. Janos. Skunk Works: A Personal Memoir of My Years at 
Lockheed. Little Brown, Boston: 1994.  
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• Dry erase boards 
• Easel pads 
• Butcher paper 
• Post-it® notes 
• Kitchenette (break room w/dry erase boards) 
• Informal discussion areas (brainstorming area) 
• Popcorn (the smell attracts people who end up talking, most often 

about the project they are working on) 

None of these utensils fit well within a cubicle environment.  Dry erase 
boards, Post-it® notes, and popcorn can be physically placed in a cubicle, 
but for individual use only.  Group activities using the above utensils require 
large cubicles or workspaces that support teams rather than separate them.  
The most effective environment supports people working together 
effectively.  Effective team activities require utensils to support 
communication.  You cannot tell children not to eat with their hands without 
providing an alternative.  Likewise, you cannot build project teams without 
providing team building tools. 

When evaluating an organization’s productivity, the presence or absence of 
these tools profoundly affects the result.  Tools, experience, environment, 
management styles, and, especially, communication are important 
considerations in determining developer capability.  They are significant 
characteristics of the developer organization and, consequently, the basic 
technology constant which is an important parameter to consider for 
estimating or when comparing organizations.
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Section 9  
Development Environment 

Evaluation  
Based upon the information described in Section 8, three controlling factor 
types can be identified which govern software development productivity.  
These factors are: 

1. Basic developer capability  
2. Environment constraints imposed by the development requirements 
3. Product characteristics 

The environment factors independent of the development requirements were 
included in the basic technology constant discussed in Section 8.  The 
environment constraints include the experience levels for programming 
language, development and target systems, and development practices.  Each 
of the experience factors are subject to the learning curve characteristics 
introduced in Section 8.2.1.4.  The learning curve accounts for the 
productivity loss due to a lack of expertise by individuals in the 
environment.  People still make mistakes even though efficiency improves 
with knowledge, understanding, and experience. 

Product characteristics that limit productivity include the development 
standards and reliability concerns, requirements volatility, memory and 
performance constraints, and operational security, among others.  Typical 
productivity (in source lines per person month [ESLOC/PM]) can be as high 
as 300 ESLOC/PM for an accounting system, yet only 50 ESLOC/PM for a 
space satellite payload with the variance attributable only to product 
characteristics. 

The environment and development processes contain imperfections.  The 
“volatility” factors describe the impact of these imperfections (bugs).  The 
volatility ratings describe the impact of the environment immaturity.  The 
volatility factors are: 

• Development system volatility (DVOL) 
• Target system volatility (TVOL) 
• Practices/methods volatility (PVOL) 

The physical environment also has a DIRECT and significant impact on 
productivity and quality.  The important physical characteristics are:  

• Number and proximity of development sites, multiple development 
sites (MULT) 

• Number of real or virtual organizations involved in software 
development, multiple organizations (MORG) 

• Number and severity of security classifications in the project, 
multiple classifications (MCLS) 

• Location of development support personnel, resource support 
locations (RLOC) 

• Access to development and target resources, resource dedication 
(RDED) 

The most incomprehensible thing about the 
world is that it is comprehensible. 

                                        Albert Einstein 

Einstein argued that there must be a 
simplified explanation of nature 
because God is not capricious or 
arbitrary.  No such faith comforts the 
software engineer.  Much of the 
complexity that he must master is 
arbitrary complexity. 

                         Fred Brooks 

Poor management can increase 
software costs more rapidly than any 
other factor…  Despite this cost 
variation, COCOMO does not include 
a factor for management quality, but 
instead provides estimates which 
assume that the project will be well 
managed… 
  Barry Boehm 
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• Average terminal response time (RESP) 
• Access to hardcopy – source listings, etc., hardcopy turnaround 

time (TURN) 

9.1 Learning curve vs. volatility 
There is an issue that must be clarified before we can discuss the 
development environment.  The impact of the environment on the 
development cost and schedule occurs on two fronts: learning curve and 
volatility.  The first occurs due to inexperience with the processes and tools 
present in the environment.  The second impact relates to the maturity of the 
development process itself. 

The learning curve, evaluated through the experience parameters, accounts 
for the loss of productivity due to a lack of understanding and expertise by 
the individuals in the development environment.  Efficiency in any area 
improves with knowledge, experience, and understanding of that area.  
People make mistakes; this is a fundamental property of the universe.  The 
number of mistakes, and the impact of those mistakes, can be grouped under 
an umbrella which we think of as human breakage.  The impact of the 
breakage varies with experience. 

Volatility accounts for imperfections in the process.  The environment 
contains “bugs” which we think of as process breakage.  As the process 
matures, the breakage decreases.  New technology is always immature, even 
if the development organization is certified at CMMI Level 5.  Old 
technology is always somewhat immature.  Operating systems undergo a 
continuing series of upgrades during their useful life to repair errors that 
were undiscovered at the time of delivery.  Methods continue to evolve as 
development methods improve.  The evolution of technology never reaches 
perfection. 

Experience and volatility must be accounted for even in mature 
environments and product lines.  

9.2 Personnel experience characteristics 
There are three concepts that define the personnel experience characteristics.  
They are briefly: 

1. Initial penalty determined by magnitude of technology change 

2. Maximum learning rate controlled by complexity of application, 
process, or system 

3. Mastery cost will equal a priori (prior) cost if process efficiency 
remains unchanged 

The learning curve phenomenon is a factor in each of the five experience 
ratings: application experience (AEXP), development system experience 
(DEXP), programming language experience (LEXP), practices and methods 
experience (PEXP), and target system experience (TEXP).  Each parameter 
shows a maximum penalty for no experience at the start of development, and 
a decreasing penalty based upon prior experience (always measured at the 
start of development) and the relative impact of that parameter.  The mastery 
cost may be less than the a priori cost; that is to say that a lot of experience 
should hopefully improve productivity. 
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The a priori cost represents the hypothetical cost or productivity in the 
absence of any penalty due to the introduction of the experience parameter of 
interest.  For example, assume you have a “black belt” in the FORTRAN 
programming language.  Use of the language has become an important 
element of your culture.  For this project, you are being introduced to the 
C++ language due to a project requirement.  Both FORTRAN and C++ are 
third generation languages and, for the purpose of this example, the number 
of source code lines required to satisfy project requirements are similar for 
both languages. 

The first time you use a language, there will be a productivity 
loss represented as the initial penalty (shown in Figure 9-1).  The 
second project will have a smaller cost impact.  The rate at 
which you can learn to effectively use the language is the 
maximum learning rate.  The learning rate is a function of the 
language. 

Over time, the cost impact of the language decreases until the 
language is mastered.  At that time, the use of the language is 
culture and the impact drops to zero.  However, productivity 
(mastery cost) is near the same as before the language change 
because the development is unchanged.  The mastery cost is not 
always equal to the a priori cost.  The mastery cost can be lower 
if the ending capability is more efficient than the a priori 
capability. 

Each of the personnel experience parameters is driven by two variables.  The 
first variable specifies the number of years of experience.  The second 
variable addresses the language or system type or complexity.  The result is 
the relative cost impact defined by the two variables.  The impact of 
programming language experience on software development effort is defined 
by language complexity and the number of years of experience. 

Effective average experience is an important concept in calculating the 
experience value.  Average experience is the simple arithmetic average 
experience measured over the software development team.  If the team 
members are isolated from each other by placing the members in separate 
offices or cubicles, they have no opportunity to leverage their learning and 
experience with the result that the experience rating cannot be better than a 
simple average.  If you place the team members in an environment where the 
members can work together and leverage their experience, the result is an 
effective experience level that is closer to that of the most experienced 
member.  For example, place an expert in a work area supporting free 
communications with the requirement that the sole purpose of this expert is 
to support a group of inexperienced developers.  Let the work area be a 
Skunk Works™.  Does the group of developers function as though the group 
had the experience approaching that of the expert?  The relative experience 
value between a simple average and the expert is almost solely dependent on 
the quality of communications. 

9.2.1 Programming language experience 
The LEXP parameter evaluates the effective average experience level for the 
software development team.  The language experience parameter is 
classified (grouped) in terms of the number of years it takes to master (black 
belt) the language.  Mastery is defined as the level at which a programmer 
does not need a programming language reference manual to perform most 
programming tasks.  The mastery level has been established from language 
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         Figure 9-2: Impact of programming language experience on  
software product development cost                
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studies in the specific programming language.  Most programming 
languages are categorized as one-year languages. 

The simplest language to master is the 26 statement Dartmouth 
BASIC, (see Table 9-1).  The next group is the broadest and includes 
languages that require approximately one year to master.  There are 
two languages requiring three or more years to master.  The first, PLI 
Version F, contains the full language capability including capabilities 
such as multi-tasking, etc.  Note the PL/I language subset G, omitting 
the special Version F features, requires only one year to master.  
Ada, C, C++ and C#, using full constracts, have been classed as 5 
year mastery languages. 

There is a level of programming capability that involves learning to 
communicate with a computer.  Some refer to this ability as Von 
Neumann54

Languages such as Ada, C, C++, C# and others are very complex in 
their entirety and most developers use a small subset of these 
powerful languages.  If you use the language with its complete 
structure and capability (including such features as multi-threaded 
processes, parallel processing and low level bit manipulation), the 
languages take approximately five years to master.  The extra years are not 
dependent upon the language itself, but are 
based on the inherent complexity of non-
language-specific topics.  For example, 
parallel processing usually requires intimate 
knowledge of both the language and 
underlying hardware and operating system 
characteristics.  These complex topics take 
the same time to master, regardless of the 
language used. 

 thinking.  That ability is common to all programming 
languages.  Pascal is a special case when transferring to any complex 
language.  The lower subset of Pascal, Ada and C derivatives are 
much alike, so that it is assumed that the knowledge gained in the 
first year of Pascal use is directly transferable to any complex 
language.  Thus, there is a difference between Pascal and FORTRAN 
as starting languages. 

 
The relative impact of programming 
language experience on development cost is 
shown in Figure 9-2.  Each curve in the 
figure represents one language category 
from Table 9-1.  The worst impact is a 
relative cost increase of 1.53 for a complex 
language project using programmers with 
no experience with the language or only a 
basic understanding of how to communicate 
with a computer.  The corresponding cost 
impact for a Dartmouth BASIC project 
under the same conditions is only 1.15, or 
15 percent. 

                                                 
54 John Von Neumann (1903 – 1957), mathematician and major contributor to a vast 
range of fields, is considered by many as the father of the modern computer. 

Table 9-1: Programming language mastery 
time (Years) 

Mastery 
Years 

Programming 
Language 

0.5    BASIC 

1 FFORTRAN 
   COBOL 
   C/ C++ / C#  
    (basic   constructs) 
   PL/I Subset G 
   Pascal 
   Ada (basic constructs) 
   Macro Assemblers 

2    JOVIAL 
   CMS-2 
   Mainframe assemblers 

3    PL/I Version F 

5    Full use of Ada/ C / C++/ C# 
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9.2.2 Practices and methods experience 
The PEXP rating specifies the effective average experience of the team with 
an organization’s current practices and methods at the start of the 
development task.  The groupings (Code 1, etc.) in this parameter are related 
to the levels of the MODP rating.  The rating assumes the organization is 
moving to a higher MODP rating (1, 2, or 3 level transition).  The MODP 
level the transition is moving “from” is assumed to be a “cultural” MODP 
level; that is, the organization has been at the “from” level 
for a long time and it represents the normal organizational 
approach for developing software.  A one-level transition in 
the MODP rating corresponds to the Code 1 transition.   

The organization has zero or more experience at the “to” 
level.  The PEXP experience level specifies the amount of 
experience gained at the “to” level at the start of software 
task development.  Experience will be gained at this new 
level during the development.  This experience is not 
considered in evaluating the parameter; in fact, the 
experience is already accounted for in the parameter values. 

If the developer organization is not attempting a transition 
during the project, the PEXP rating will be 1.0. 

An interesting lesson that is visible in Figure 9-3 is the very 
large penalty involved in attempting a transition from the 
“Dark Ages” to modern practices makes a large transition 
dangerous.  Any transition from the culture level has a 
negative productivity impact on the project under 
consideration and supports the rationale to not introduce any 
new practices during a development contract. 

9.2.3 Development system 
experience 
The Development System Experience (DEXP) parameter 
evaluates the impact of the effective average development 
system experience on the project productivity.  The 
development system consists of the hardware and software 
(computer, operating system, database management system, 
compilers, and tools) used in the software development.  
Programming language is NOT considered in this evaluation; 
however, the compiler and other language tools are 
considered. 

Systems are separated into three groups for the purposes of 
this evaluation.  The first group is the single-user system, 
such as a desktop personal computer.  The second group is a 
centralized multiple-user system, such as a star configuration 
that serves the development activity.  The third type is a 
distributed system in which multiple computers and multiple 
users are involved.  Web-type systems are in this category. 

Each of the impact curves begins with an experience level of 
zero years.  Experience gained with a single-user system can 
be applied to the higher complexity systems as demonstrated 
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for the language experience ratings.  As shown in Figure 9-4, a year of 
experience with a single system reduces the penalty from 1.16, assuming 
zero experience with the multiple user system, to 1.10 (a one-year penalty).  
Adding one year of additional multiple user system experience equates to a 
distributed system experience penalty of 1.03 (two years cumulative 
experience). 

The development system experience rating highlights the high penalty when 
moving to an unfamiliar development system at the start of a project, even 
when non-project-related parts of the organization are culturally familiar 
with the system.  It also points out the value of having co-located 
development system experts as part of the project organization. 

9.2.4 Target system experience 
The TEXP parameter evaluates the effective average target 
system experience for the project team.  The target system, or 
platform, consists of the hardware and software (computer, 
operating system, etc.) used in the software product.  

Systems are separated into three groups for the purposes of this 
evaluation (with an example shown in Figure 9-5).  The first 
group is the single-user system, such as a desktop personal 
computer.  The second group is a centralized multiple-user 
system, such as a star configuration that serves the development 
activity.  The third type is a distributed system in which 
multiple computers and multiple users are involved.  Web-type 
systems satisfy this category. 

Caution: If the target system and development system are the 
same, set the target system experience level at 3 years (or 
values to 1.00) so the platform does not get counted twice in the 
estimate. 

9.3 Development support 
characteristics 

9.3.1 Development system volatility 
The DVOL parameter accounts for the development effort impact related to 
problems created or amplified by changes and/or failures in the 
organization’s development system.  Those listed as major 
changes in the parameter are essentially “show stoppers” 
that halt development until the problems are resolved.  
Some examples of major changes are: a significant upgrade 
to an operating system, a re-certified Ada compiler release, 
or beta versions of any software system. 

A minor change creates a slowdown.  For example, the 
slowdown might be caused when an error is uncovered in 
the process, tools, or methods used in the software 
development. 

The performance penalty accounts for a productivity loss, 
not a change in software product functionality or a change 
in product size.  The relative impact varies from zero 
(rating value of 1.00) to a 25 percent increase in 
development effort, as shown in Table 9-2. 

Table 9-2: Development system volatility ratings 

DVOL – Development System Volatility 

Value Description 

1.00 No major changes, annual minor changes 

1.07 Annual major changes, monthly minor changes 

1.13 Semiannual major changes, biweekly minor changes 

1.19 Bimonthly major changes, weekly minor changes 

1.25 Biweekly major changes, minor changes every 2 days 

 

 
Figure 9-5: Impact of target system experience on 
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9.3.2 Practices/methods volatility 
The PVOL rating accounts for problems created or amplified by changes 
and/or failures in the organization’s development practices and methods, as 
shown in Table 9-3.  Those listed as major changes in the 
parameter are “show stoppers” that halt development until the 
problems are resolved.  For example, the methodology 
supported by a computer-aided software engineering tool fails 
to work as advertised, or the vendor releases an upgrade to 
their tool that changes the way data is tracked. 

A minor change creates a slowdown.  For example, the 
slowdown might be caused when a “bug” is uncovered in the 
process, tools or methods used in the software development. 

9.4 Management characteristics 
The most important management characteristics (analyst 
capability, programmer capability, and application domain 
experience) are included in Section 8 Basic Capability Evaluation.  

 There are additional environment impacts that are best categorized as 
management characteristics.  These are: (1) multiple levels of security 
classification in the project environment, (2) multiple development 
organizations sharing project responsibility, (3) project personnel spread 
over multiple development sites, and (4) the relative location of the 
development support personnel.  The combined impact of these management 
issues is significant. 

9.4.1 Multiple security classifications 
The Multiple Security Classification (MCLS) levels rating accounts 
for inefficiencies encountered when the development team is working 
at different access levels; for example, if the project is 
compartmentalized and part of the team lacks clearances, there is an 
impact on the organization’s efficiency.  Obviously, it is better to have 
all team personnel operating with the same project access.  The 
quantitative development effort impacts of security classification are 
shown in Table 9-4.  These impacts represent the impacts that can be 
directly related to the classification issue.  There are additional 
impacts related to communication problems that are accounted for in 
the capability ratings and in the multiple development sites factors. 

9.4.2 Multiple development organizations 
The Multiple Development Organization (MORG) rating evaluates 
the impact of MORGs on software development productivity.  
Multiple organizations always arise when mixing personnel from 
multiple contractors.  Multiple organizations within a single 
organization are possible, and often appear, due to organization 
rivalry.  Single organization, other organizations, prime and 
subcontractors (single site), and multiple contractors ratings are 
shown in Table 9-5.  

For example, software, system, and test engineering groups within a 
single organization function as separate contractors.  Assigning 
personnel from those organizations to a product-focused organization where 
the personnel are controlled and evaluated by the product manager will cause 

Table 9-3: Practices/methods volatility ratings 

PVOL – Practices/Methods Volatility 

Value Description 

1.00 No major changes, annual minor changes 

1.08 Annual major changes, monthly minor changes 

1.15 Semiannual major changes, biweekly minor changes 

1.23 Bimonthly major changes, weekly minor changes 

1.30 Biweekly major changes, minor changes every 2 days 

 

Table 9-4: Multiple security classifications ratings 

MCLS – Multiple Security Classifications 

Value Description 

1.00 Common security classification 

1.06 Classified and unclassified personnel 

1.10 Compartmentalized and uncleared personnel 

1.15 Multiple compartment classifications 

 

Table 9-5: Multiple development organizations ratings 

MORG – Multiple Development Organizations 

Value Description 

1.00 Single development organization 

1.09 Developer using personnel from other organizations 

1.15 Prime and subcontractor organization – single site 

1.25 Multiple contractors – single site 
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it to function as a single organization.  If not evaluated by the product 
manager, the rating would deteriorate to the personnel from other 
organizations’ rating. 

9.4.3 Multiple development sites 
The Multiple Development Sites (MULT) rating accounts 
for inefficiencies related to separation of team elements.  
The separation within this parameter relates to physical 
separation.  Table 9-6 shows ratings for single sites, as well 
as multiple sites in close proximity, separations within 1 
hour, and separations less than 2 hours.  

A common heuristic states that programmers do not like to 
walk more than 50 feet to ask a question; this helps to 
define the term “close proximity.”  This small separation—
such as team members spread around the building’s 
software development area with other projects mixed in the 
office (cubicle) arrangement—is enough to be the 
difference between a single site and close proximity rating. 

Separation is measured in time units rather than distance.  
The basic measure is “How long does it take to initiate an 
action related to a problem?”  Politics within or between 
organizations can add to the time separation. 

The next rating value, associated with a one-hour separation, includes 
development teams separated over multiple floors in a facility or located in 
adjacent buildings. 

The high rating refers to teams being spread across a city, such as the case 
where there are multiple physical sites. 

Caution:  Do not be tempted to include working across the Internet, with 
tools such as e-mail, as sites within close proximity.  While necessary and 
sometimes a major value-added, nothing compares to one-on-one, face-to-
face contact to get problems solved. This phenomenon is discussed in greater 
detail in Section 8.3.  

9.4.4 Resources and support location 
The Resource and Support Location (RLOC) rating 
accounts for the inefficiencies incurred due to a separation 
between the development system support personnel and 
the development team, as shown in Table 9-7.  System 
support personnel include the following: 

• Operating system support 

• Development tool and practices support 

• System hardware support 

• Programming language support 

• Target system support 

Access can be limited by either physical, organizational, 
and/or procedural constraints, in turn creating wasted time and effort.  The 
ideal environment places the support personnel within easy access such as 
within the magic 50 feet of the development team. 

Table 9-6: Multiple development site ratings 

MULT – Multiple Development Sites 

Value Description 

1.00 All developers at single site within same 
development area 

1.07 Multiple sites within close proximity 

1.13 Multiple sites within 1 hour separation 

1.20 Multiple sites with > 2 hour separation 

 

Table 9-7: Resources and support location ratings 

RLOC – Resources and Support Location 

Value Description 

1.00 Support personnel co-located with development 
personnel 

1.12 Developer and support personnel separation < 30 
minutes 

1.23 Developer and support personnel separation < 4 hours 

1.35 Developer and support personnel separation > 6 hours 
or working with a foreign target system and language 
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Separation is measured in time units rather than distance as in the MULT 
rating.  The basic measure is: “How long does it take to initiate an action 
related to a problem?”   

The worst case (1.35) support conditions exist when the development team is 
working with a foreign target system (e.g., Japanese) and operating 
environment with user documentation written in the foreign language.  
Developing a product on one continental U.S. coast using a joint contractor 
and development system on the opposite coast can also create the 6-hour 
separation from problem occurrence to the time the problem reaches the 
support personnel.
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Section 10  
Product Characteristics Evaluation 

Product characteristics make up the third group of parameters that describe a 
software development project.  Section 7 describes the size (magnitude) of 
the project, Section 8 describes the basic capability of the developer which is 
the core of the environment, and Section 9 describes the product-related 
environment.  The focus of this section is the software product 
characteristics. 

10.1 Product complexity 
Complexity (apparent) is defined as the degree to which a system or 
component’s design or implementation is difficult to 
understand and verify55

There are many measures proposed for software 
complexity.  Some, such as McCabe’s Complexity 
Measure

.  In other words, complexity is 
a function of the internal logic: the number and 
intricacy of the interfaces and the understandability of 
the architecture and code.  The first thing we must 
understand about complexity is that it has nothing to do 
with software size.  Size is a separate, independent 
software product dimension. 

56, are precise and require the source code 
before the measure can be completed.  Putnam57

3T
KD =

 
empirically noted that when his software database was 
plotted as K (total lifecycle effort in person years) 
versus T3 (development time in years), the data 
stratified according to the complexity of the software 
system.  The ratio, currently known as the manpower 
buildup parameter (MBP), was called D for difficulty in 
the early days of estimating.  The majority of estimating 
tools refer to D as complexity, mathematically stated as: 

                  (10-1) 

Stratification of the values occurs around the system types as shown in Table 
10-1, which is a useful rough guide in determining the appropriate D value 
for specific software types.   

  

                                                 
55 Institute of Electrical and Electronics Engineers. IEEE Standard Computer 
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY: 
1990. 
56 McCabe, T.J. “A Complexity Measure.” IEEE Transactions on Software 
Engineering New York, NY: 1976. 
57 Putnam, L.H. “A General Empirical Solution to the Macro Software Sizing and 
Estimating Problem.” IEEE Transactions on Software Engineering New York, NY: 
1978. 

Table 10-1: Stratification of complexity data 

D Description 

4 Development primarily using microcode. Signal processing 
systems with extremely complex interfaces and control logic. 

8 
New systems with significant interface and interaction 
requirements with larger system structure.  Operating systems 
and real-time processing with significant logical code 

12 Application with significant logical complexity.  Some changes 
in the operating system, but little or no real-time processing. 

15 
New standalone systems developed on firm operating systems.  
Minimal interface with underlying operating system or other 
system parts. 

21 Software with low logical complexity using straightforward 
input/output (I/O) and primarily internal data storage. 

28 Extremely simple software containing primarily straight-line 
code using only internal arrays for data storage. 

 

All life is an experiment. 

Ralph Waldo Emerson 
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There are some distinguishing features of the Putnam complexity data: 

• Complexity is the least significant of the principle estimation 
parameters except for tasks with high complexity (D<12). 

• Complexity is the inverse of the complexity number. 

• High complexity increases schedule and, because of the small team-
size allowed, increases productivity. 

• Managing a task as though it was more complex—that is, stretching 
the schedule or using a smaller team—usually equates to higher 
productivity. 

The characteristics are summarized in Figure 10-1.  

Barry Boehm proposed a similar but more detailed 
complexity definition for the COnstructive COst MOdel 
(COCOMO).  By combining the results of the two 
approaches, a detailed method for determining software 
system complexity is shown in Table 10-2.  The complexity 
table is divided into four functional categories, each 
describing a software focus: control, computation, device-
dependent (input/output), and data management.  The 
complexity value selection process consists of the 
following steps: 

1. Select the column that most closely describes the 
function of the software product.  An operating system is largely 
control.  A personnel system is primarily data management. 

2. Follow the selected column from a simple system or minimum 
complexity (28) to most complex or maximum complexity (4), 
stopping at the row that best describes the function of the system.  
The operating system is best described by the phrase Re-entrant and 
recursive coding.  Fixed-priority interrupt handling.  The personnel 
system is best described by Multiple input and/or output.  Simple 
structural changes, simple edits. 

3. Select the appropriate complexity value from the Rating column.  
The operating system description corresponds to a complexity value 
of 8.  The personnel system rating corresponds to a complexity 
value of 15. 

4. If the software system fits multiple categories, follow each 
appropriate category rating to the row that best describes the 
function.  The rating should correspond to the category that 
represents the greatest percentage of the software, or in some cases, 
the category that will drive the development cost and schedule.  For 
example, a weather prediction program is largely one of data 
presentation; however, the development will likely be driven by the 
computation aspects of the problem.  The best descriptor is 
“difficult but structured numerical analysis; near singular matrix 
operations, partial differential equations,” which corresponds to a 
complexity value of eight. 

 

 

 

 
Figure 10-1: Software complexity illustration 
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10.2 Display requirements 
The Special Display Requirements (DISP) rating is divided into four 
categories and accounts for the amount of effort to implement user interfaces 
and other display interactions that cannot be accounted for by size alone.  
The rating values (penalties) are shown in Table 10-3. 

The four DISP categories are: 

• Simple – no user interface issues 

• User friendly – Windows or other Graphical User 
Interface (GUI) software 

• Interactive – User friendly with the addition of 
mechanical interfaces such as track balls, etc. 

• Complex – Interactions with multiple processors such 
as communication within a flight simulator. 

Table 10-2: Complexity rating matrix 

Rating Control Ops Computational Ops Device-dependent Ops Data Mgt Ops 

28 Straight line code with a 
few non-nested Structured 
Programming (SP) 
operators; Do’s, Cases, If 
then else’s, simple 
predicates 

Evaluation of simple 
expressions; for example, 
A=B+C*(D-E) 

Simple read/write statements 
with simple formats 

Simple arrays in main 
memory 

21 Straightforward nesting of 
SP operators. Mostly 
simple predicates 

Evaluation of moderate 
level expressions; for 
example, D+SQRT(B**2-
4*A*C) 

No cognizance needed of 
particular processor or I/O 
device characteristics.  I/O done 
at Get/Put level. No cognizance 
of overlap. 

Single-file subsetting with 
no data structure changes, 
no edits, no intermediate 
files. 

15 Mostly simple nesting, 
some inter-module 
control, decision tables 

Use of standard math and 
statistical routines. Basic 
matrix and vector 
operations. 

I/O processing includes device 
selection, status checking and 
error processing. 

Multiple input and/or 
output.  Simple structural 
changes, simple edits. 

12 Highly nested SP 
operators with many 
compound predicates.  
Queue and stack control.  
Considerable inter-module 
control. 

Basic numerical analysis, 
multi-variant interpolation, 
ordinary differential 
equations.  Basic 
truncation, round-off 
concerns. 

Operations at physical I/O level 
(physical storage address 
translations: seeks, reads, etc.) 
Optimized I/O overlap. 

Special purpose 
subroutines activated by 
data stream contents.  
Compiles data restructured 
at record level. 

8 Re-entrant and recursive 
coding.  Fixed-priority 
interrupt handling. 

Difficult but structured 
Non-linear Analysis (NA): 
near singular matrix 
operations, partial 
differential equations. 

Routines for interrupt diagnosis, 
servicing, masking.  
Communication line handling. 

A generalized, parameter-
driven file structuring 
routine.  File building, 
command processing, 
search optimization. 

4 Multiple-resource 
scheduling with 
dynamically changing 
priorities.  Microcode 
level control. 

Difficult and unstructured 
NA, highly accurate 
analysis of noisy, 
stochastic data. 

Device timing-dependent 
coding, micro-programmed 
operations. 

Highly coupled, dynamic 
relational structures.  
Natural language data 
management. 

 

Table 10-3: Special display requirements ratings 

DISP – Special Display Requirements 

Value Description 

1.00 Simple input/output requirements 

1.05 User friendly 

1.11 Interactive 

1.16 Complex requirements with severe impact 
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The first category includes software that has no display requirements or only 
a very simple display interface.  The interface is primarily for data 
presentation with no display interaction. 

The second category includes almost all user friendly interfaces.  Mouse-
driven user interaction is a typical characteristic of these interfaces.  The 
source code necessary to produce the external interface accounts for the bulk 
of the development effort. The 5 percent penalty accounts for additional 
design and test effort needed to create and implement the interface.  Note 
that modern programming languages generally develop much of the interface 
in a building block fashion that eases the implementation and design 
requirements.  Visual Basic and Visual C++ are typical of these languages. 

The interactive third category extends the user friendly capability to involve 
additional mechanical interfaces and sensors to implement the user 
interaction. 

The fourth category accounts for additional effort to implement user 
interfaces, such as those in flight simulators.  This user interface level 
generally involves multiple processors and system components to support 
the interface implementation. 

10.3 Rehosting requirements 
The Rehosting requirements (HOST) rating evaluates the effort 
to convert the software from the development product to the 
final product on the target system.  This penalty does not apply 
to projects whose sole purpose is devoted to porting software 
from one platform, or system, to another.  Software porting 
projects are considered full-scale developments of their own.  
The values (penalties) are shown in Table 10-4. 

Minor language and/or system changes involve inefficiencies 
related to minor system differences or minor language 
differences moving from the development to the target system.  
A minor change might include moving from FORTRAN IV to 
FORTRAN 97 or DEC version 5 to version 6.  A minor system 
change could be a move from the contractor’s development 
platform to the target platform in the operational environment if the move is 
not transparent. 

Major changes are “show stoppers,” such as moving from JOVIAL to the 
C++ programming languages or from a Sun platform to an Intel workstation.  
A major change is not transparent and involves a major software or system 
development.  The 63 percent penalty represents more than an additional 50 
percent of the development directly to the target system.  If both the 
language and the system have major development rework, 
the 94 percent penalty is essentially the cost of developing 
the software twice. 

10.4 Memory constraints 
The target system Memory Constraint (MEMC) rating 
evaluates the development impact of anticipated effort to 
reduce application memory requirements.  The rating is 
divided into four categories, as shown in Table 10-5. 

The first category assumes the available target system 
memory is abundant and no memory economy measures 

Table 10-5: Memory constraint ratings 

MEMC – Memory Constraint 

Value Description 

1.00 No memory economy measures required 

1.04 Some overlay use or segmentation required 

1.15 Extensive overlay and/or segmentation required 

1.40 Complex memory management economy measures 
required 

 

Table 10-4: Rehosting requirements ratings 

HOST -- Rehosting 

Value Description 

1.00 No rehosting – common language and system 

1.17 Minor language OR minor system change 

1.31 Minor language AND minor system change 

1.63 Major language OR major system change 

1.94 Major language AND major system change 
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are required.  Software applications have a way of utilizing all available 
memory.  Not many years ago, the memory limit was only 16 kilobytes.  The 
limit today is in the multi-megabyte range and growing.  Many application 
developments have more than adequate memory resources.  No limit means 
no penalty. 

The second category assumes that some single layer overlaying will be 
required to allow adequate resources with room for growth.  The 
development penalty is only 4 percent.    

The third category includes those applications requiring multiple overlay 
levels or segments.  The penalty for the more severe layering is 15 percent. 

The final category includes the truly memory-impaired applications in which 
code and algorithm refinement will be required to satisfy memory 
constraints.  Complex memory management most often occurs in 
applications where volume and power consumption drive the size of 
application memory.  Spacecraft payloads are typical of the complex 
memory management applications. 

10.5 Required reliability 
The Required Reliability (RELY) parameter evaluates the 
impact of reliability requirements on the ultimate software 
development effort.  The reliability impact includes the 
specification or documentation level required by the product 
development, the level of quality assurance (QA) imposed on 
the development, and the test and rigor required in the unit and 
formal qualification testing phases.  The impacts of reliability 
requirements are shown in Table 10-6. 

The specification level ranges from software for personal use 
through developments requiring certification or public safety 
requirements.  This list does not include unique very high 
levels as those required for Minuteman systems, etc.  Most 
software developments fall under the commercial or essential 
specification levels. 

The quality assurance levels do not necessarily equate to the product quality 
or reliability required.  For example, we expect public safety-level QA to be 
imposed where a loss of life is possible.  This includes most Federal 
Aviation Administration (FAA)-related software, but is not typically 
required for military aircraft software.  Public safety QA is required for 
nuclear weapons software, but doesn’t necessarily apply to nuclear reactor 
software.  The QA level usually matches the corresponding specification 
level.  However, special situations occasionally arise, requiring that the QA 
level differs from the specification by two or more levels.   

The first level (category) assumes the software product will not be used by 
other than the creator; hence, neither specifications, nor QA, nor testing is 
required and the impact will be zero. 

Level 2 assumes the product will have specifications and that some quality 
assurance and test (some by the user) will be required.  The 16 percent 
penalty accounts for this product level. 

Military Standard (MIL-STD) specifications, quality assurance, and testing 
are required, according to the software development standards involved in 
the development.  The IEEE 12207 standard is typical for this level of 
reliability.  The MIL-STD requirements penalty is about 31 percent.  The 

Table 10-6: Required reliability ratings 

RELY – Required Reliability 

Value Description 

1.00 Personal software – user developed 

1.16 Commercial software – user developed 

1.31 MIL-STD with essential documentation 

1.48 MIL-STD with full documentation 

1.77 High reliability with public safety requirements 
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penalty can be increased by adding more rigorous QA and test to the 
development. 

Level 4 reflects the penalty associated with the MIL-STD development, with 
added Independent Verification and Validation (IV&V) requirements.  This 
category includes additional documentation, QA, and test requirements 
consistent with IV&V. 

The highest category includes software developments with public safety 
requirements similar to those used by the FAA and nuclear systems.  The 
penalty for these developments is near 77 percent.  There are requirements 
that rank above the public safety reliability category.  The number of 
systems above this level is small, too small to define a category, and have 
very large penalties.  The Minuteman missile system is typical of this 
undefined category.  

10.6 Real-time performance 
requirements  
The Real-Time Operation (RTIM) rating evaluates the impact of the fraction 
of the software product that interacts with the outside environment.  The 
term we use traces back to the real-time system analysis definition.  In 
system analysis, real-time is used to refer to the control or behavior of the 
system.  Behavior is governed by the sensors, etc., that are external to the 
system.  For example, activate an alarm when the temperature exceeds 451 
degrees Fahrenheit.  The temperature, the real-time interface, is coupled to 
an external sensor. 

Thus, consider communications with the software to be driven by the 
external environment or a clock.  The fraction of the system that interacts 
with the external environment will be large in event-driven systems, such as 
process controllers and interactive systems.  Again, the real-time behavior is 
related to system behavior, not the execution speed of the system.  Execution 
speed is rated by the time constraint parameter (TIMC). 

When less than 25 percent of the application software is 
involved in the real-time behavior, the impact of the real-time 
operation is negligible as shown in Table 10-7. 

When the application software has approximately 50 percent 
of the software involved in real-time behavior, the effort 
penalty is 9 percent.  When the application real-time 
involvement reaches approximately 75 percent, the effort 
penalty is 18 percent.  At this level, the application has 
characteristics of a process controller, or a closely coupled 
interface between the machine and the environment.  The 
ultimate real-time behavior is reached when the application is 
totally involved with the external environment.  The ultimate 
real-time penalty is 27 percent, based on available historical 
data. 

10.7 Requirements volatility 
Requirements Volatility (RVOL) is one of the most sensitive cost estimating 
parameters, both numerically and politically.  The RVOL rating evaluates 
the cost penalty due to expected frequency and scope of requirements 
changes after the baseline Software Requirements Review, and projects the 
impact of those changes on delivery cost and schedule.  The magnitudes of 

Table 10-7: Real time operation ratings 

RTIM – Real Time Operation 

Value Description 

1.00 Less than 25% of source code devoted to real time 
operations 

1.09 Approx 50% of source code devoted to real time 
operations 

1.18 Approx 75% of source code devoted to real time 
operations 

1.27 Near 100% of source code devoted to real time 
operations 
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the RVOL penalties are shown in Table 10-8.  Scope changes 
do not necessarily result in a change of baseline size.  The cost 
and schedule growth resulting from the RVOL parameter 
includes the inefficiencies created by the redirections, but does 
not include impacts due to size changes.   

COCOMO uses a similar parameter with the following 
categories: (1) essentially no changes, (2) small, non-critical 
redirections, (3) occasional moderate redirections, (4) frequent 
moderate or occasional redirections, and (5) frequent major 
redirections.  These categories are not as clear as the ones 
posed in Table 10-8.  COCOMO II did away with the cost 
driver definition, added a new parameter, Requirements 
Evolution and Volatility (REVL), with a new definition, and 
moved the parameter to the software product size. 

We use a definition that essentially establishes categories that cover the 
magnitude of the instability with terms that are more appropriate and 
conceptually easier to grasp.  The parameter category definitions are defined 
in Table 10-8. 

The first category specifies that no requirements changes are possible or are 
improbable.  It has occurred more than a few times and is the only product 
parameter that shows a decrease in development effort.  No requirements 
change is analogous to software being developed on a production line for a 
well-defined product. 

A familiar product is a product that has been produced by the developer 
multiple times and is familiar to the customer providing the requirements.  It 
is an established product, but there will be small requirements changes even 
though it is an established product line.  There is no effort penalty in the 
product characteristics for this type of development; however, there will be 
application experience productivity gains in the basic technology area 
discussed in Section 8. 

A known product is a product that has been produced by the developer, and 
the customer provides the requirements at least one time.  The developer and 
the customer understand the technology.  The product will likely experience 
some moderate requirements changes.  The requirements changes will 
increase the size of the software product.  The size change is projected by the 
size growth discussed in Section 7.  The 15 percent penalty in the RVOL 
rating accounts for turbulence in the development process that cannot be 
accounted for in the size growth. 

Technology exists, but is unfamiliar to the developer.  It represents the state 
in which the product has been produced before, but is unfamiliar to the 
developer and/or the customer providing the product requirements.  There 
will be requirements changes.  The effort penalty for this state is 29 percent. 

The state in which the technology is new and unfamiliar to both the 
developer and the customer providing the product requirements is true 
research and development.  There will be frequent requirements changes, 
and some of them will likely be major.  The effort penalty for this state is 46 
percent, not counting the effort increase that will manifest itself as size 
growth. 

Table 10-8: Requirements volatility ratings 

RVOL - Requirements Volatility 

Value Description 

0.93 Essentially no requirements changes 

1.00 Familiar product – small non-critical redirections 

1.15 Known product – occasional moderate redirections 

1.29 Technology exists – unfamiliar to developer 

1.46 Technology new – frequent major redirections 
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10.8 Security requirements 
The Software Security Requirements (SECR) parameter evaluates the 
development impact of application software security requirements.  Apply 
this parameter (value > 1.00) only if the software product is required to 
implement the security level specified; that is, if the product is expected not 
to satisfy, but to implement the specified security level.  

The SECR rating is based on the Common Criteria58

The penalties listed in the table apply to situations 
where the requirements must be satisfied in the 
software development.  It is possible for some of the 
requirements to be satisfied within an underlying 
operating system and have no impact on the software 
itself.  For example, software developed for a VAX 
computing system can use, without explicitly 
implementing, EAL 3 security assurance. 

, an 
internationally conceived and accepted security 
evaluation standard.  The effort penalties for each 
Evaluation Assurance Level (EAL) rating are shown in 
Table 10-9.  The values in the table are for the software 
development.  Testing and certification costs occuring 
after the completion of development are not included in 
the ratings.  High assurance levels above EAL 4 
(required for cryptographic certification) will incur 
additional certification costs. 

The holy grail of high assurance for security is EAL 7 because it requires 
rigorous, formal design and mathematical proof that the security policies of 
the system are upheld through the development process.  Since the EAL 7 
rating requires a formal model and proof, a system of more than 
approximately 5,000 lines of code is very difficult to evaluate.  The penalty 
value for EAL 7 is based on a limited set of historic data and is only 
approximate.  The penalty could be worse than the value given in Table 10-
9.  On the other hand, the value could be lower, but not likely. 

The previous standard used by most estimating systems is based on the 
National Security Agency Orange Book, which defined security 
requirements rating on a scale from A through D, with level A at the highest 
level.  The Orange Book ratings are included parenthetically with the 
(roughly) equivalent CC EAL rating. 

 
 

 
 

 

 

                                                 
58 The Common Criteria for Information Technology Security Evaluation 
(abbreviated as Common Criteria or CC) is an international standard (ISO/IEC 
15408) for computer security 

Table 10-9: Security requirements ratings 

SECR – Security Requirements 

Value Description 

1.00 CC EAL 0 – No security requirements (D) 

1.03 CC EAL 1 – Functional test  

1.08 CC EAL 2 – Structural test (C1) 

1.19 CC EAL 3 – Methodical test and check (C2) 

1.34 CC EAL 4 – Methodical design, test and review (B1) 

1.46 CC EAL 5 – Semiformal design and test (B2) 

1.60 CC EAL 6 – Semiformal verification, design and test (B3) 

2.35 CC EAL 7 – Formal verification, design and test (A) 
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Appendix A 
Acronyms 

 
2GL  Second-Generation Language 
3GL  Third-Generation Language 
4GL  Fourth-Generation Language 
 
AAF  Adaptation Adjustment Factor 
AAP  Abbreviated Acquisition Program 
ACAP  Analyst Capability 
ACAT  Acquisition Category 
ACT  Annual Change Traffic 
ACTD  Advanced Concept Technology Demonstration 
ADM  Acquisition Decision Memorandum  
ADPS  Automatic Data Processing System 
AEXP  Application Experience 
AFCAA  Air Force Cost Analysis Agency 
AFIT  Air Force Institute of Technology 
AFMC  Air Force Materiel Command 
AFP  Adjusted Function Point 
AIS  Automated Information System 
AoA  Analysis of Alternatives 
APEX  Application Experience (COCOMO II) 
API  Application Program Interface 
APSE  Ada Programming Support Environment  
ASD  Assistant Secretary of Defense 
AT&L  Acquisition, Technology, and Logistics 
 
β  Entropy Factor 
BF  Backfire Factor (function point conversion) 
 
C4I  Command, Control, Communications, Computers, and Intelligence  
C/A  Contract Award 
CA  Complexity Attribute 
CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing  
CAIG  Cost Analysis Improvement Group 
CARD  Cost Analysis Requirements Description 
CC  Common Criteria 
CD  Concept Design 
CDD  Capabilities Description Document 
CDR  Critical Design Review 
CDRL  Contract Data Requirements List 
CER  Cost Estimating Relationships 
CIO  Chief Information Officer 
CJCSI  Chairman Joint Chiefs of Staff Instruction 
CM  Configuration Management 
CMM  Capability Maturity Model 
CMMI  Capability Maturity Model Integration 
COCOMO COnstructive COst MOdel 
COTS  Commercial Off-the-Shelf 
CPD  Capabilities Production Document 
CPLX  Product complexity 
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CPLX1  PRICE-S parameter combining ACAP, AEXP,CEXP, and TOOL 
CPLXM  Management Complexity (PRICE-S) 
CPU  Central Processing Unit 
CR  Concept Refinement 
CSC  Computer Software Components 
CSCI  Computer Software Configuration Item 
CSU  Computer Software Unit 
Ctb  Basic technology constant 
Cte  Effective technology constant 
 
D  Software complexity 
DAB  Defense Acquisition Board 
DATA  Database size multiplier (COCOMO II) 
DAU  Defense Acquisition University  
DB  Database 
DCAA  Defense Contract Audit Agency 
DET  Data Element Type 
DEXP  Development System Experience 
DISP  Special Display Requirements 
DoD  Department of Defense 
DoDD  Department of Defense Directive 
DoDI  Department of Defense Instruction 
DON  Department of the Navy 
DRPM  Direct Reporting Program Manager 
DRR  Design Readiness Review 
D/P   Ratio of bytes in the database to SLOC in the program 
DSI  Delivered Source Instructions 
DSLOC  Delivered Source Lines of Code 
DSYS  Development System Complexity 
DVOL  Development System Volatility 
 
EAF  Effort Adjustment Factor 
EAL  Evaluation Assurance Level 
ECP  Engineering Change Proposal 
ECS  Embedded Computer System 
EDM  Engineering Development Model 
EI  External Inputs 
EIF  External Interfaces 
EO  External Outputs 
EQ  External Inquiries 
ERP  Enterprise Resource Program 
ESC  Electronic Systems Center (U.S. Air Force) 
ESD  Electronic Systems Division 
ESLOC  Effective Source Lines of Code 
ETR  Effective Technology Rating 
EVMS  Earned Value Management System 
 
FAA  Federal Aviation Administration  
FAR  Federal Acquisition Regulation 
FP  Function Point 
FQA  Formal Qualification Audit 
FQR  Final Qualification Review 
FQT  Formal Qualification Test 
FRP  Full-Rate Production 
FRPDR  Full-Rate Production Decision Review 
FSP  Fulltime Software Personnel 



118 
 

FTR  File Type Reference 
FY  Fiscal Year 
 
G&A  General and Administrative 
GSC  General System Characteristic 
GUI  Graphical User Interface 
 
HACS  Hierarchical Autonomous Communication System  
HOL  Higher-Order Language 
HOST  Rehosting requirements 
HPWT  High Performance Work Teams 
HTML  Hypertext Markup Language 
HWCI  Hardware Configuration Item 
 
I/O   Input/Output 
ICD  Interface Control Document (software development) 
  Initial Capabilities Document (acqusition) 
ICE  Independent Cost Estimate 
IEEE  Institute of Electrical and Electronics Engineers  
IFPUG  International Function Point Users Group 
ILF  Internal Logical Files 
INTEGE  Integration – External (PRICE-S) 
INTEGI  Integration – Internal (PRICE-S) 
IPT  Integrated Program Team 
IOC  Initial Operational Capability 
IOT&E  Initial Operation Test and Evaluation 
IPD  Integrated Product Development 
ISPA  International Society of Parametric Analysts 
IV&V  Independent Verification and Validation 
 
JCIDS  Joint Capabilities Integration and Development System 
JROC  Joint Requirement Oversight Council 
 
KDSI  Thousands of Delivered Source Instructions 
KPP  Key Performance Parameter 
KSLOC  Thousand Source Lines of Code 
 
LCCE  Life Cycle Cost Estimate 
LEXP  Language Experience 
LMSC  Lockheed Missiles and Space Company 
LPPM  Lines Per Person-Month 
LRIP  Low Rate Initial Production 
LRU  Line Replaceable Unit 
LTEX  Language and Tools Experience 
 
M  Maturity of the product at the time the estimate is made 
MAIS  Major Automated Information System 
MBI  Manpower Buildup Index (SLIM®) 
MBP  Manpower Buildup Parameter (SLIM®) 
MCLS  Multiple Security Classifications 
MDA  Milestone Decision Authority 
MDAP  Major Defense Acquisition Program 
MEMC  Memory Constraint 
MIL-STD Military Standard 
MIS  Management Information Systems 
MLI  Machine-Level Instruction 
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MM  Man-Months 
MODP  Modern Programming Practices 
MORG  Multiple Development Organizations 
MULT  Multiple Development Sites  
 
n/a  Not Applicable 
NA  Non-linear Analysis  
NASA/JSC National Aeronautics and Space Administration at Johnson Space Center  
NEPA  National Environmental Policy Act  
NCCA  Naval Center for Cost Analysis 
NII  Networks and Information Integration 
 
O&S  Operations and Support 
OO  Object-Oriented 
OOD  Object-Oriented Design 
OS  Operating System 
OSD  Office of the Secretary of Defense 
OT&E  Operational Test and Evaluation 
OTA  Office of Technology Assessment 
 
P&D  Production and Deployment  
PCA  Physical Configuration Audit 
PCAP  Programmer Capability 
PCON  Personnel Continuity  
PDL  Program Design Language 
PDR  Preliminary Design Review 
PEO  Project Executive Officer 
PEXP  Practices Experience 
PF  Productivity Factor 
PI  Productivity Index (SLIM®) 
PIMP  Process Improvement parameter 
PLAT  Platform parameter (REVIC) 
PLTFM  Platform parameter (PRICE-S) 
PM  Person-Month 
POE  Program Office Estimate 
PROFAC Productivity Factor (PRICE-S) 
PS  Processing Step 
PSE  Program Support Environment 
PVOL  Practices and Methods Volatility Parameter 
PWB  Programmer’s Workbench 
PY  Person-Year 
 
QA  Quality Assurance 
QSM  Quantitative Software Management 
QUAL  Product quality requirements 
 
RAD  Rapid Application Development 
RD  Redesign 
RDED  Resource Dedication 
RDT&E  Research, Development, Test and Evaluation 
RELY  Required Software Reliability 
RESP  Terminal response time 
RET  Record Element Type 
REVIC  Ray’s Enhanced Version of Intermediate COCOMO or Revised Intermediate COCOMO 
REVL  Requirements Evolution and Volatility 
RFP  Request for Proposal 
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RI  Re-implementation 
RLOC  Resource Support Location 
ROM  Read-Only Memory 
RT  Retest 
RTIM  Real-Time Operating Requirements 
RUSE  Required Reuse 
RVOL  Requirements Volatility 
 
SAF  Size Adjustment Factor 
SAR  Software Acceptance Review 
SCEA  Society of Cost Estimating and Analysis 
SCED  Schedule Constraint 
SDD  Software Design Document 
SDP  Software Development Plan 
SDR  System Design Review 
SECNAV Secretary of the Navy (U.S) 
SECR  Software Security Requirements 
SECU  DoD security classification parameter (REVIC) 
SEER-SEMTM System Evaluation and Estimation of Resources – Software  Estimating Model (now known as 

SEERTM for Software) 
SEI  Software Engineering Institute 
SER  Size Estimating Relationship 
SICAL  Size Calibration Factor 
SITE  Multiple development sites parameter (REVIC) 
SLIM®  Software Lifecycle Model 
SLOC  Source Lines of Code 
SMC  Space and Missile Systems Center 
SoS  System-of-Systems 
SOW  Statement of Work 
SP  Structured Programming 
SPEC  System Specification Level 
SPR  Software Productivity Research 
SPS  Software Product Specification 
SRR  Software Requirements Review 
SRS  Software Requirements Specification 
SS  Semantic Statement 
SSCAG  Space Systems Cost Analysis Group 
SSR  Software Specification Review 
STOR  Main storage constraint attribute (COCOMO II) 
STP  Software Test Plan 
SU  Software Unit 
S/W  Software 
SWDB  Software Database 
SWDM  Software Development Method 
SYSCOM Systems Command 
 
TD  Technology Development 
TEMP  Test and Evaluation Master Plan 
TEST  Product test requirements 
TEXP  Target System Experience 
TIMC  Product timing constraints 
TIME  Execution time constraint attribute (COCOMO II) 
TOC  Total Ownership Cost 
TOOL  Automated, modern tool support 
TRR  Test Readiness Review 
TURN  Hardcopy turnaround time 
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TVOL  Target System Volatility 
 
UFP  Unadjusted Function Point 
UML  Unified Modeling Language 
USAF/SMC U.S. Air Force Space & Missile Systems Center 
USD  Under Secretary of Defense 
UTIL  Utilization, percentage of hardware memory or processing speed utilized by the Software  

(PRICE-S), similar to TIMC 
 
V&V  Verification and Validation 
VAF  Value Adjustment Factor (function points) 
VEXP  Virtual Machine Experience 
VHOL  Very High-Order Language 
VIRT  Virtual Machine Volatility 
 
WBS  Work Breakdown Structure
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Appendix B 
Terminology 

 

ADAPTATION ADJUSTMENT FACTOR.  Accounts for the effort expended in the development process that does 
not directly produce product source code.  The size adjustment factor is applied to the reused and COTS components 
of the software system.  See also Size Adjustment Factor. 

ADJUSTED FUNCTION POINT.  Adjusted function points modify the function point count to account for 
variations in software size related to atypical performance requirements and/or operating environment. 

AGILE DEVELOPMENT.  The Agile development strategy develops the Computer Software Configuration Item 
(CSCI) as a continual refinement of the requirements, starting from a simple beginning to a complete product.  
There are many development approaches that fall under the Agile umbrella.   
ALGORITHM.  A set of well-defined rules or processes for solving a problem in a definite sequence. 

APPLICATION SOFTWARE.  Software that implements the operational capabilities of a system. 

ARCHITECTURE DESIGN.  The second step in the software development process.  The architecture contains 
definitions for each of the Computer Software Components (CSCs) contained in the product.  The definition 
contains the requirements allocated to the CSC and the internal interfaces between the CSCs and the interfaces to the 
external system.  Formal software plans for the CSCs and the higher-level CSCI are also developed in this activity.  
The activity culminates in a Preliminary Design Review to determine the readiness for advancement to the detail 
design phase.   

ASSEMBLY LANGUAGE.  A symbolic representation of the numerical machine code and other constants needed 
to program a particular processor (CPU). 

BACKFIRE.  A process used to convert between function points and source lines of code (SLOC).  The process 
produces a functional total size. 

BASIC TECHNOLOGY CONSTANT.  A measure of the raw software development capability of an organization 
in terms of analyst and programmer capabilities, application experience, use of modern practices and tools, and 
access to the development system.  This constant does not include impacts of the software product-specific 
constraints.  The range of the basic technology constant is between 2,000 and 20,000. 

BIT.  Unit of information; contraction of binary digit. 

BYTE.  Abbreviation for binary term, a unit of storage capable of holding a single character.  A byte can be 5 to 12 
bits based on the CPU as an alphabet character.  The most common representation of a byte is 8 bits.   

CAPABILITY.  A major element of the basic technology constant.  Capability can be outlined as a measure of 
motivation, team approaches to development, working environment, problem solving skills, and software 
engineering ability. 

CODE AND UNIT TEST.  The fourth step in the software development process.  Software Product Specifications 
are drafted and the production code is written for each Computer Software Unit (CSU).  The deliverable source code 
is thoroughly tested since this is the one level that allows direct access to the code.  When the unit testing is 
successfully completed, the CSU is made available for integration with the parent CSC. 

COHESION.  An internal property that describes the degree to which elements such as program statements and 
declarations are related; the internal “glue” with which a component is constructed.  The more cohesive a 
component, the more related are the internal parts of the component to each other and the overall purpose.  In other 
words, a component is cohesive if all elements of the component are directed toward and essential for performing a 
single task.  A common design goal is to make each component as cohesive as possible or do one thing well and not 
do anything else. 
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COMPILER.  A program that translates source code into object code.  The compiler derives its name from the way 
it works, looking at the entire piece of source code and collecting and reorganizing the instructions. 

COMPLEXITY.  The degree to which a system or component has a design or implementation that is difficult to 
understand and verify.  In lay terms, complexity is a function of the internal logic, the number and intricacy of the 
interfaces, and the understandability of the architecture and code. 

COMPONENT-LEVEL ESTIMATE.  The component-level (or third-order) estimate is the most comprehensive 
estimate type.  This model combines the effective software product size with a series of environment and product 
adjustments (defining the development organization production capability and product characteristics) to obtain the 
development effort or cost.  CSCIs are the primary basis of this estimate. 

COMPUTER DATA DEFINITIONS.  A statement of the characteristics of basic elements of information operated 
upon by hardware in responding to computer instructions.  These characteristics may include – but are not limited to 
– type, range, structure, and value. 

COMPUTER SOFTWARE.  Computer instructions or data.  Anything that can be stored electronically is software.  
Software is often divided into two categories: 1) systems software, including the operating system and all the 
utilities that enable the computer to function, and 2) applications software, which includes programs that do real 
work for users. 

COMPUTER SOFTWARE COMPONENT.  A functional or logically distinct part of a CSCI.  CSCs  may be top-
level or lower-level.  CSCs may be further decomposed into other CSCs and CSUs. 

COMPUTER SOFTWARE CONFIGURATION ITEM.  See Configuration Item. 

COMPUTER SOFTWARE UNIT.  An element specified in design of a CSC that is separately testable. 

CONFIGURATION IDENTIFICATION.  The current approved or conditionally approved technical documentation 
for a configuration item as set forth in specifications, drawings, and associated lists; the documents referenced 
therein. 

CONFIGURATION ITEM.  Hardware or software, or an aggregation of both, designated by the procuring agency 
for configuration management.  A CSCI is normally defined by a set of requirements documented in a SRS and an 
ICD or an interface requirements specification. 

COTS.  Short for Commercial Off-the-Shelf, an adjective that describes software or hardware products that are 
ready-made and available for sale to the general public.  COTS software behavior can be characterized in terms of 
an input set, an output set, and a relationship (hopefully simple) between the two sets.  COTS software is a black-
box software element for which the countable source code is not known.  COTS products are designed to be 
implemented easily into existing systems without the need for customization.  

COUPLING.  An external property characterizing the interdependence between two or more modules in a program.  
Components can be dependent upon each other because of references, passing data, control, or interfaces.  The 
design goal is not necessarily complete independence, but rather to keep the degree of coupling as low as possible. 

CSCI ACCEPTANCE TEST.  The final step in the full-scale development of the CSCI.  The test evaluates the 
performance of the entire software product (CSCI) against the formal software requirements allocated during the 
system requirements analysis and approved at the SRR.  The CSCI Acceptance Test does not include system 
integration or user operational tests. 

DETAIL DESIGN.  The third step in the software development process.  The detail design is developed by 
allocating requirements to each CSC and by establishing the design requirements for each CSU.  The activity 
produces a design for each CSU as well as internal interfaces between CSUs and interfaces to the higher level CSCI.  
The activity concludes with a formal CDR which reviews the design, test plans, and critical design issues that arise 
during the activity.   

DEVELOPMENT CONFIGURATION.  The contractor’s software development and associated technical 
documentation that defines the evolving configuration of a CSCI during the development phase.  It is under the 
development contractor’s configuration control and describes the software configuration at any stage of the design, 
coding, and testing effort.  Any item in the Developmental Configuration may be stored on electronic media. 

http://www.webopedia.com/TERM/c/compiler.html##�
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DEVELOPMENT ENVIRONMENT.  The environment available to the software development team, including the 
practices, processes, facilities, development platform, as well as the personnel capability, experience, and 
motivation. 

DEVELOPMENT PLATFORM.  Hardware and software tools and computing system. 

DRIVER.  A piece of software written to accommodate testing of a module before all of its surrounding software is 
completed.  The driver generates all of the inputs for a module.  It may do this according to a preprogrammed 
sequence or be interactive with the tester. 

EFFECTIVE SIZE.  A measure of the size of the software product that includes the new functionality, the modified 
functionality, and the energy expended in the development process that does not contribute to the software product.  
This includes reverse engineering and regression testing of the reused software, and the evaluation and testing of 
COTS products. 

EFFECTIVE SOURCE LINE OF CODE.  Incorporates a combination of new SLOC, existing code modified to 
meet new requirements, and the effort impact of reverse engineering and regression testing of unmodified code and 
reusable software components. 

EFFECTIVE TECHNOLOGY CONSTANT.  This constant combines the basic technology constant with the 
impacts of the development environment affected by the specific software development and constraints on the 
development contributed by the product characteristics. 

EFFICIENCY.  A measure of the relative number of machine level instructions produced by a given compiler in 
processing a given source program. 

EMBEDDED COMPUTER SYSTEM (ECS).  A computer system that is integral to an electro-mechanical system 
such as a combat weapon, tactical system, aircraft, ship, missile, spacecraft, certain command and control systems, 
civilian systems such as rapid transit systems and the like.  Embedded computer systems are considered different 
than automatic data processing systems primarily in the context of how they are developed, acquired, and operated 
in a using system.  The key attributes of an embedded computer system are:  (1) It is a computer system that is 
physically incorporated into a larger system whose primary function is not data processing; (2) It is integral from a 
design, procurement, or operations viewpoint; and (3) Its output generally includes information, computer control 
signals, and computer data. 

ENTROPY.  An index of the degree in which the total energy of a thermodynamic system is uniformly distributed 
and is, as a result, unavailable for conversion into work.  Entropy in software development amounts to the energy 
expended in the process without contributing to the software product.   

EVOLUTIONARY DEVELOPMENT.  In evolutionary development, the software requirements for the first version 
of the product are established; the product is developed and delivered to the customer.  At some point during 
development or after the first product delivery, the requirements for a second, third (and so forth) product release are 
defined and implemented for the next release. 

EXPANSION RATIO.  The ratio of a machine level instruction (object code) to higher-order language instructions 
(source code). 

FIRMWARE.  Software (programs or data) that has been written into read-only memory (ROM).  Firmware is a 
combination of software and hardware. ROMs, PROMs, and EPROMs that have data or programs recorded on them 
are firmware. 

FOURTH-GENERATION LANGUAGE.  Often abbreviated 4GL, fourth-generation languages are programming 
languages closer to human languages than typical high-level programming languages.  Most 4GLs are used to access 
databases.  The other four generations of computer languages are: First Generation-machine Language, Second 
Generation-assembly Language, Third Generation-high-level programming Languages such as FORTRAN, C, C++, 
and Java, and Fifth Generation Languages used for artificial intelligence and neural networks.  

FULL-SCALE DEVELOPMENT.  All effort expended to development of the software product commencing with 
the Software Requirements Review (SRR) and continuing through the Final Qualification Test (FQT).  This includes 
architecture development, detail design, code and unit test, internal software integration, and customer acceptance 
testing.  Development time includes the period between the conclusion of SRR through FQT. 
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FUNCTION POINT.  Function Point (FP) analysis is a method for predicting the total SIZE of a software system.  
FPs measure software size by quantifying the system functionality provided to the estimator based primarily on the 
system logical design. 

GENERAL SYSTEM CHARACTERISTICS.  A set of 14 adjustments used to determine the overall Value 
Adjustment Factor (VAF) in the adjusted function point calculation. 

GROWTH.  The expected increase in software size during software development.  Growth is caused by a number of 
factors: requirements volatility, projection errors, and functionality changes.  Growth is determined by complexity, 
project maturity, and the distribution of new and reused source code. 

HIGHER-ORDER LANGUAGE (HOL).  A computer language using human-like language to define machine code 
operations.  A compiler translates HOL statements into machine code (e.g., FORTRAN, COBOL, BASIC, JOVIAL, 
ADA). 

INCREMENTAL DEVELOPMENT.  Requirements are allocated functionally to each increment at the beginning of 
the CSCI development.  The full functionality is not available until completion of the final increment.  Requirements 
allocation can be planned to provide partial functionality at the completion of each increment.  However, the full 
CSCI functionality and the ability to test the complete CSCI requirements cannot be completed until all of the 
incremental developments are complete.   

INPUT/OUTPUT (I/O) DRIVER.  A piece of software, generally in subroutine format, that provides the unique 
interface necessary to communicate with a specific peripheral device. 

INSTRUCTION.  A basic command.  The term instruction is often used to describe the most rudimentary 
programming commands.  For example, a computer's instruction set is the list of all the basic commands in the 
computer's machine language.  An instruction also refers to a command in higher-order languages. 

INSTRUCTION SET ARCHITECTURE (ISA).  The attributes of a digital computer or processor as might be seen 
by a machine (assembly) language programmer; i.e., the conceptual structure and functional behavior, distinct from 
the organization of the flow and controls, logic design, and physical implementation. 

INTERPRETER.  An interpreter translates high-level instructions into an intermediate form, which it then executes.  
In contrast, a compiler translates high-level instructions directly into machine language.  Interpreters are sometimes 
used during the development of a program, when a programmer wants to add small sections one at a time and test 
them quickly.  In addition, interpreters are often used in education because they allow students to program 
interactively.  

LANGUAGE.  A set of symbols, conventions, and rules used to convey information to a computer.  Written 
languages use symbols (that is, characters) to build words.  The entire set of words is the language's vocabulary.  
The ways in which the words can be meaningfully combined is defined by the language's syntax and grammar.  The 
actual meaning of words and combinations of words is defined by the language's semantics. 

LIFE CYCLE.  The period of time from the inception of software requirements to development, maintenance, and 
destruction. 

MACHINE LANGUAGE.  A first-generation programming language, also called “assembly language;” actual 
language used by the computer in performing operations; refers to binary or actual codes. 

MODIFIED CODE.  Pre-developed code that is to be modified before it can be incorporated into the software 
component to meet a stated requirement. 

MODULAR.  A software design characteristic that organizes the software into limited aggregates of data and 
contiguous code that performs identifiable functions.  Good modular code has the attributes of low coupling and 
high internal cohesion. 

NEW CODE.  Newly developed software. 

NON-DEVELOPMENTAL SOFTWARE (NDS).  Deliverable software that is not developed under the contract but 
is provided by the contractor, the government, or a third party.  NDS may be referred to as reusable software, 
government-furnished software, or commercially available software, depending on its source. 

OBJECT.  Generally, any item that can be individually selected and manipulated.  This can include shapes and 
pictures that appear on a display screen as well as less tangible software entities.  In object-oriented programming, 
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for example, an object is a self-contained entity that consists of both data and procedures to manipulate the data.  
Objects generally exhibit a behavior defined as functional code. 

OBJECT PROGRAM.  A first-generation (machine-code) program that can be executed by the computer produced 
from the automatic translation of a source program. 

OPERATING SYSTEM.  Operating systems perform basic tasks, such as recognizing input from the keyboard, 
sending output to the display screen, keeping track of files and directories on the disk, and controlling peripheral 
devices such as disk drives and printers.  For large systems, the operating system is also responsible for security, and 
ensuring that unauthorized users do not access the system.  Operating systems provide a software platform on top of 
which other programs, called application programs, can function.  The application programs must be written to run 
on top of a particular operating system. 

OPERATIONAL SOFTWARE.  The software that operates in embedded computers. 

PERSON-MONTH (PM). The average effort contributed by a single person over a one-month period.  A month is 
assumed to be 152 hours by most estimating tools. 

PRODUCTIVITY.  The ratio of effective source code size and full-scale development effort.  Effort includes all 
personnel costs attributed to the software project development from the start of architecture design through the 
completion of the final qualification test.  Productivity is sometimes specified in person-hours per ESLOC. 

PRODUCTIVITY FACTOR.  A multiplication factor (ESLOC/PM) used for projecting software development 
effort.  The factor is a function of product type and effective size.  The productivity factor is commonly determined 
by the product type, historic developer capability, or both, derived from past development projects.  The 
productivity factor is sometimes specified in person-hours per ESLOC. 

PRODUCTIVITY INDEX (PI).  Contains the impacts of product characteristics and the development environment, as 
well as the domain experience and capability rating for the organization, much like the effective technology 
constant.  PI also subsumes the application complexity impact and the effects of software reuse; that is, the impacts 
of reverse engineering and regression testing are contained in the PI value. 

PROGRAM.  An organized list of instructions that, when executed, causes the computer to behave in a 
predetermined manner.  Without programs, computers are useless.  A program is like a recipe.  It contains a list of 
ingredients (called variables) and a list of directions (called statements) that tell the computer what to do with the 
variables.  The variables can represent numeric data, text, or graphical images.  Eventually, every program must be 
translated into a machine language that the computer can understand.  This translation is performed by compilers, 
interpreters, and assemblers.  

QUALITY PLAN.  Contains an overview of the Quality Assurance and Test Plan, which verifies that the product 
performs in accordance with the requirements specification and meets all pertinent customer requirements.  The 
Quality Plan is part of the Software Development Plan. 

RAYLEIGH STAFFING PROFILE.  A roughly bell-
shaped curve (shown in graphic) that represents the 
buildup and decline of development staff in a software 
lifecycle.  An IBM study showed the maximum staffing 
rate for successful research and development projects 
never exceeded the maximum staffing rate defined for that 
type of project.  Exceeding the maximum staffing rate 
correlated strongly with project failure.  The decaying 
exponential curve represents the number of problems 
remaining to be solved.  Combining the two curves produces 
the Rayleigh staffing profile. 

REAL-TIME.  Occurring immediately.  Real-time operating systems respond to input immediately.  The term 
evolves from the definition of a real-time system.  A real-time system interacts with the outside environment; thus, 
the term refers to control or behavior of the system.  For example, turn the alarm on when the temperature exceeds 
451 degrees Fahrenheit.  The sensor is in the external environment, the response is immediate.  This definition 
should not be confused with time-constrained, which requires that a process be completed within a specified time.  

Figure B-1: Rayleigh staffing profile 
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RELEASE.  A configuration management action whereby a particular version of software is made available for a 
specific purpose (e.g., released for test).  Release does not necessarily mean free from defects.   

REUSED CODE.  Pre-existing code than can be incorporated into a software component with little or no change.  
The theoretical cost impact of reused code is zero; however, the hidden costs of reverse engineering and regression 
testing are practical penalties that must be accounted for in reuse. 

SECURITY.  Software security levels are specified by the Common Criteria Evaluation Assurance Levels (EAL).  
The assurance levels range from EAL1 for software where security is not viewed as serious to EAL7 for software 
applications with extremely high risk operation and/or where the value of the assets justifies the high certification 
costs. 

SIZE ADJUSTMENT FACTOR.  Accounts for the effort expended in the development process that does not 
directly produce product source code.  The size adjustment factor is applied to the reused and COTS components of 
the software system.  See also Adaptation Adjustment Factor. 

SOFTWARE.  See Computer Software. 

SOFTWARE DESIGN DOCUMENT (SDD).  Describes the complete design of a CSCI.  It describes the CSCI as 
composed of Computer Software Components (CSCs) and CSUs.  The SDD describes the allocation of requirements 
from a CSCI to its CSCs and CSUs.  Prior to the Preliminary Design Review, the SDD is entered into the 
Developmental Configuration for the CSCI.  Upon completion of the Physical Configuration Audit, the SDD, as part 
of the Software Product Specification, is entered into the Product Baseline for the CSCI. 

SOFTWARE DEVELOPMENT PLAN.  Describes the dates, milestones, and deliverables that will drive the 
development project.  It defines who is responsible for doing what and by when.  It also describes how the important 
development activities, such as reviews and testing, will be performed.  The activities, deliverables, and reviews are 
described for each step of the development process. 

SOFTWARE DOCUMENTATION.  Technical data or information, including computer listings and printouts, 
which document the requirements, design, or details of the computer software, explains the capabilities and 
limitations of the software, or provides operating instructions for using or supporting computer software during the 
software’s operational life. 

SOFTWARE ENGINEERING ENVIRONMENT.  The set of tools, firmware, and hardware necessary to perform 
the software engineering effort.  The tools may include (but are not limited to) compilers, assemblers, linkers, 
loaders, operating systems, debuggers, simulators, emulators, test tools, documentation tools, and database 
management systems(s). 

SOFTWARE MAINTENANCE.  Also known as software support.  Maintenance focuses on change associated with 
error correction, adaptation required as the software’s environment evolves, enhancement changes brought about by 
changing software requirements, and preventative (software re-engineering) changes needed to make the software 
easier to correct, adapt, or enhance.  Each software change degrades the coupling and cohesion of the product 
making periodic preventative maintenance necessary. Maintenance includes knowledge retention of the software and 
support environment. 

SOFTWARE QUALITY.  A judgment by customers or users of a product or service; the extent to which the 
customers or users believe the product or service meets or surpasses their needs and expectations. 

SOURCE LINE OF CODE (SLOC).  A measure of software size.  A simple, concise definition of a SLOC is any 
software statement that must be designed, documented, and tested.  The three criteria – designed, documented, and 
tested – must be satisfied in each counted SLOC.   

SPIRAL DEVELOPMENT.  A risk-driven approach that includes a series of evolving prototypes of the software 
product culminating in an operational prototype that is the basis for a formal software development.    

SUPPORT SOFTWARE.  Offline software.  For example:  development and diagnostic tools, simulation and/or 
training, maintenance, site support, delivered test software, and report generators. 

SYSTEM-LEVEL ESTIMATE.  The system level, or first-order, estimate is the most rudimentary estimate type.  
This model is simply a productivity constant (defining the development organization production capability in terms 
of arbitrary production units) multiplied by the software product effective size to obtain the development effort or 
cost.   
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SYSTEM SOFTWARE.  Software designed for a specific computer system or family of computer systems to 
facilitate the operation and maintenance of the computer system and associated programs.  For example:  operating 
system, communications, computer system health and status, security, and fault tolerance. 

TRANSACTION.  A group of data and operations defined by the application domain.  Transactions must have the 
property of crossing the application boundary.  A unique transaction is identified by a unique set of data contents, a 
unique source and/or destination, or a unique set of operations. 

UNADJUSTED FUNCTION POINT (UFP).  The UFP count relates only to the total functional size of an average 
software system with the requirements and structure defined by the FP count.  There have been no adjustments for 
the system type or development and operational environments.  

VALUE ADJUSTMENT FACTOR.  The mechanism used by the FP methodology to adjust the software size 
projection in response to special requirements placed on the software.     

WATERFALL.  The classic software life-cycle model suggests a systematic, sequential approach to software 
development that begins at the system level and progresses through a series of steps: analysis, design, code, test, 
integration, and support.  The waterfall model outlines steps that are part of the conventional engineering approach 
to solving problems.  

WORD.  In programming, the natural data size of a computer.  The size of a word varies from one computer to 
another, depending on the CPU.  For computers with a 16-bit CPU, a word is 16 bits (2 bytes). On large CPUs, a 
word can be as long as 64 bits (8 bytes). 
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Appendix D  
Software Life Cycle Approaches 

There are many representations of a software development life cycle.  Each 
software industry subculture has its own – or several – representations, and 
each representation tends to be modified somewhat for specific projects.  
There are many generic approaches that characterize the software 
development process.  Some of the approaches (process models) that are in 
use today are: 

• Waterfall (Section D.1) 
• Spiral (Section D.2) 
• Evolutionary (Section D.3) 
• Incremental (Section D.4) 
• Agile (Section D.5) 
• Rapid Application Development (Section D.6) 
• Other Approaches (Section D.7) 
 

There are certainly additional methods, although the above list covers the 
mainstream approaches.  In the following sections we describe a selected 
subset of these approaches representing the major underlying models that are 
pertinent to the purposes of this guidebook. 

D.1 Waterfall 
The waterfall model is the fundamental basis of most software development 
approaches and serves well as a basis for describing the typical software 
development processes.  Note the word “typical” allows us to establish steps 
in a process that are not strictly defined 
or dictated by Department of Defense 
(DoD) standards or specifications.  This 
section outlines steps that are part of the 
normal engineering approach to solving 
problems and are followed in the 
generalized waterfall development 
approach common to system 
development as shown in Figure D-1.   

The steps in the software waterfall model process are: 
• Planning (Software requirements analysis) 
• Requirements (CSCI requirements analysis and specification) 
• Full-scale development 

o Preliminary design (Architecture design to PDR)  
o Detail design (PDR to CDR) 
o Construction (Code and unit [CSU] development and test) 
o Construction (Component [CSC] integration and test) 
o Construction (Configuration item [CSCI] integration and test) 

• System integration and test 
• Maintenance 
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Figure D-1: Software waterfall process 

 

I’m sorry Dave.  I’m afraid I can’t do that. 
        HAL 9000 
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D.2 Spiral development 
The spiral development approach59

The product of the last iteration of the CSCI requirements development is the 
final operational product prototype.  Note the final spiral is similar to a 
formal traditional engineering waterfall process.  

 shown in Figure D-2 was proposed by 
B.W. Boehm in 1988.  The risk-driven spiral approach includes a series of 
evolving prototypes of the software product culminating in an operational 
prototype that is the basis for a formal software development; also known as 
software development waterfall.    

Each iteration of the spiral produces a product.  That product can be an 
undeliverable prototype used to flesh out the definition (capabilities, user 
interface, etc.) of the final product, or the product can be a deliverable that 
can be fielded and used as a baseline to be improved in the next spiral of the 
development. 

D.3 Evolutionary development 
Evolutionary software development has much in common with the spiral 
development described in the previous section.  In evolutionary 
development, the software requirements for the first version of the product 
are established; the product is developed and delivered to the customer.  At 
some point during development or after the first product delivery, the 
requirements for a second or third etc., product release are defined and 
implemented for the next release.  These evolutions of the product are 
referred to as evolutionary spirals.  Microsoft Word is an example of the 
development of an evolving product—starting with Word 1, Word 2, and 
now Word 2007.   

                                                 
59 Boehm, B.W., “A Spiral Model of Software Development and Enhancement,” 
Computer. May, 1988, Pp 61-72 

 
Figure D-2: Spiral development process 

 

For both the evolutionary and 
single-step approaches, software 
development shall follow an 
iterative spiral development 
process in which continually 
expanding software versions are 
based on learning from earlier 
development. 

        DoD Instruction 5000.24 

In a true spiral development, 
the cost of developing any 
software beyond spiral 1 is 
pure speculation.  

Randall W. Jensen 
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The evolutionary process shown in 
Figure D-3 is logical and problem-
free until the spirals begin to overlap 
in time.  Ideally, there should be no 
overlap between product 
developments.  When this occurs, the 
teams implementing the two products 
must interact to resolve requirements 
and implementation issues between 
product requirements for the two 
spirals and implementations of those 
spirals.  The greater the development 
overlap, the more significant the 
impact.  A secondary development 
should not begin until after the preceding development is beyond the detail 
design milestone (CDR1) because the first product is not stable enough to 
build upon.  The defined functionality of each evolution is only available at 
its completion. 

Each evolution essentially exhibits the characteristics of a waterfall process. 

D.4 Incremental development 
Incremental developments are 
characterized by firm requirements 
allocated at Software Requirements 
Review (SRR) for each increment 
(Figure D-4). 

Incremental software development 
should not be confused with either 
spiral or evolutionary development.  
The figure shows multiple secondary 
requirements analysis stages leading to 
the SRR for each increment.  The 
important point is that the total CSCI 
requirements are developed and 
allocated to the individual increments 
before full-scale development begins.   

Full functionality is not available until completion of the final increment as 
opposed to the evolutionary approach.  Requirements allocation can be 
planned to provide partial functionality at the completion of each increment.  
However, full CSCI functionality and the ability to test all CSCI 
requirements cannot be completed until all incremental developments are 
complete.  Partial testing is possible at the completion of each increment. 

D.5 Agile development (Extreme 
programming) 
The Agile strategy is to develop the product as a continual refinement of 
requirements, starting from a simple capability to a complete product.  Agile 
development represents a radical departure from the classic waterfall 
variation.  There are many development approaches that fall under the Agile 
umbrella.  We are going to capture the essence of the concept in this section.  
This essence is not easy to document, but is extremely easy in concept.  The 
approach starts, as do most of the others, with a set of requirements that have 
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Figure D-3: Evolutionary development process 
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been approved (at least to a high level).  Rather than 
attempt to develop the full set of requirements in a single 
large project, the requirements are listed in order of 
importance and implemented, one at a time, in that order. 

The first step in development is to design a test to verify 
correct implementation of the requirement.  The 
implementation is designed, coded, tested, and reviewed 
by a small, efficient team.  The product builds in size and 
capability with each iteration.  At several points in this 
repeated process, the product architecture is evaluated and 
adjusted (re-factored) as necessary to provide an optimum 
platform for the next iteration.  Each iteration adds 
capability to the product until the product is complete and 
all requirements are satisfied, as shown in Figure D-5.   

The tests are written from the user’s perspective before the code is 
implemented.  They are then collected during the development and run in 
total at the completion of each iteration.  Each refinement is accomplished in 
days or weeks instead of months and years.  At each refinement, the 
customer can review the progress to ascertain whether the written 
requirements are consistent with the user’s needs and the available 
technology. 

D.6 Rapid application development  
Rapid Application Development (RAD) is another approach to the 
incremental software development process model that emphasizes an 
extremely short development cycle.  The RAD model is an adaptation of the 
waterfall model in which the rapid, or “high speed,” development is 
achieved through the use of reusable components.  The RAD process is 
primarily used in information system application development.  The 
following process steps are conceptually similar to the traditional waterfall 
model as follows: 

1. Build a business function model. 

2. Define the data objects that are needed to support the business model. 

3. Define the processing necessary achieve the necessary functions using 
both reusable and new components. 

4. Create the software to support the business functions, and integrate it 
with the reusable components. 

5. Test the developed software and system. 

D.7 Other approaches 
Component-based development incorporates many characteristics of the 
spiral model.  It is evolutionary in nature around the basic spiral.  The 
significant difference between the component and spiral approaches is the 
use of pre-packaged components, or classes. 
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Figure D-5: Agile development 

 

Our productivity is great, we  
just aren’t delivering anything. 

    Senior Development Manager 
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The formal methods approach is based on the formal mathematical 
specification of the computer software.  One version of this approach is 
the cleanroom software engineering method described by Harlan Mills60

Fourth-generation techniques encompass a broad spectrum of software 
tools that allow the developer to specify some characteristics of the 
software at a higher level.  The tools then automatically generate source 
code to match the user’s definition.  The form of the process can take on 
characteristics of the waterfall, the spiral, or the evolutionary models.  
Care must be taken when using new methods that proper time is spent in 
verification and validation.  The purpose of new methods is not simply to 
eliminate paperwork or reduce process time – the new method must 
ensure that the final product meets user needs and maintains high quality.   

. 

 

                                                 
60 Mills, H.D., M. Dyer, and R. Linger. “Clean Room Software 
Engineering.” IEEE Software Sept. 1987: 19-25. 

 

Harlan D. Mills (1919-1996): 
Mills’ contributions to software 
engineering have had a profound 
and enduring effect on education 
and industrial practices. His 
cleanroom software development 
process emphasized top-down 
design and formal specification. 
Mills was termed a “super-
programmer,” a term that would 
evolve to the concept in IBM of a 
“chief programmer.” In a later era, 
he might have been called a 
“hacker.” 
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Appendix E  

 Software Estimating Models 
There are a large number of ways software development estimating models 
can be categorized.  Some estimating models fit into multiple categories, 
which often lead to difficulties in trying to assign them to a specific 
taxonomy.  Boehm61

1. Analogy 

 identified seven model categories of which four are 
useful for comparison.  These types are: 

2. Expert judgment 
3. Parkinson62

4. Price-to-win 
 

5. Top-down 
6. Bottom-up  
7. Algorithmic (Parametric) 

The Parkinson, price-to-win, and top-down types can be eliminated from the 
list of important methods, not because they don’t exist, but because they are 
undesirable methods.  Parkinson’s Law states, “Work expands to fill the 
available volume.”  Estimates derived from Parkinson’s Law tend to be 
generally accurate because if the estimate leaves a cushion of time and/or 
money, the product will invariably find “extra” features and testing until the 
budgeted time and money are consumed.  The cushion can also reduce 
efficiency to consume the budget.  The weakness in the Parkinson approach 
appears when the original budget does not have adequate schedule or money. 

The price-to-win (low-bid) method has won many contracts for various 
contractors.  The estimation is based on the customer’s budget instead of the 
software functionality.  The method is most often applied for cost plus 
software and/or system development contracts.  The method, applied to a 
fixed price contract, has driven developers out of business unless the 
contractor can adjust the fixed price during the contract lifetime.  The main 
reason the price-to-win method is still a common estimating approach is 
software development estimating technology is immature and software 
developers are able to convince customers that poor (illegitimate) estimates 
are valid and achievable. 

Top-down software development estimates are derived by allocating 
software costs from a higher-level product or system budget.  The total cost 
is partitioned from the higher-level budget.  Top-down estimates can be 
derived from any of the seven estimating types listed.  In fact, the Parkinson 
and price-to-win estimates are generally top-down approaches.  The major 

                                                 
61 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc., Englewood 
Cliffs, NJ: 1981, pp. 329-42. 
62 Parkinson, C.N. Parkinson’s Law and Other Studies in Administration. Houghton-
Mifflin, Boston, MA: 1957. 

Law of Definitive Precision 
The weaker the data available 
upon which to base one’s 
conclusion, the greater the 
precision which should be quoted 
in order to give that data 
authenticity. 

Norman Augustine, 1983 

Any sufficiently advanced technology 
is indistinguishable from magic. 

                   Arthur C. Clarke 
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problem with the top-down estimate is it does not allow the estimator to see 
the software development requirements in sufficient detail to be effective. 

Algorithmic estimating models are based on one or more mathematical 
algorithms that produce an estimate as a function of a set of variables 
defined as cost drivers.  Parametric models including most of the 
commercially available estimating tools fall into this category.  

The remaining methods are summarized in Table E-1.  

E.1 Analogy models 
Analogy models are the simplest type of estimating models.  They are used 
to estimate cost by comparing one program with a similar past program or 
programs, thereby avoiding issues with expert judgment bias.  For example, 
in developing a flight program for a new aircraft, the first estimate step 
would be to locate an existing flight program from a pre-existing, but 
similar, aircraft.  The pre-existing program has a known size, development 
cost and schedule, and productivity rate.  If the new program has 20 percent 
more functionality (subjective measure) than the pre-existing program, the 
cost and schedule for the new program can be projected by scaling the 
existing cost, ignoring inflation, and scheduling to the new application.  The 
productivity should be approximately constant.  The advantage of the 
analogy method is that it is based on experience.  However, the method is 
limited because, in most instances, similar programs do not exist.  For 
example, you cannot equate the cost of 100,000 lines of Ada code for a 
bomber’s terrain-following program to 100,000 lines of COBOL code for 
payroll software.  Furthermore, for most modern systems, the new programs 
have no historical precedents.   

E.2 Expert judgment models 
Expert judgment models or techniques involve consulting with one or more 
experts to use their knowledge, experience, and understanding of the new 
project to arrive at a cost and schedule estimate.  Experts can factor in 
differences between historic project data and the requirements of the new 
software project.  The differences often include technology and architecture 

Table E-1 Comparison of major software estimating methods 

Method Description Advantages Disadvantages 

Analogy Compare project with past 
projects; scale effort and 
schedule by historic project data. 

Estimate based on actual data and 
experience. 

Few projects are similar enough to use 
without adjustments. 

Expert judgment Consult or collaborate with one 
or more “experts.” 

Little or no historical data is 
required – useful for new or unique 
projects. 

Experts present their own biases in 
estimates.  Knowledge is often 
questionable and unsupportable. 

Bottom-up Sum component estimates to 
product level. 

Detailed basis for estimates tend to 
reduce holes and improve cost 
projections. 

Detailed data is often missing in early 
development stages.  Fails to provide 
basis for schedule projections. 

Parametric Produce overall project estimate 
using mathematic algorithms 
and project characteristics. 

CERs based on historical data – 
allows the estimating model to be 
adjusted to the proposed 
development environment and 
product characteristics.  Easy to 
perform trade-off studies. 

The bias from a large number of 
parameters can lead to inaccurate 
results without training and 
experience.  Moderately subjective.   
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changes as well as personnel characteristics, development environment 
changes, and other project considerations.  This method is valuable when no 
historic precedent exists. 

On the other hand, expert judgment is often no better than the expertise and 
objectivity of the estimator, who may be biased (usually optimistic) or 
unfamiliar with the primary aspects of the development task.  It is difficult to 
find a balance between the quick-response expert estimate (which is often 
hard to rationalize) and the slower, more thorough estimate provided by an 
estimating team (group consensus). 

Popular expert judgment techniques such as the Delphi and Wideband 
Delphi methods are often used to support the expert’s estimate.  Delphi 
techniques can alleviate bias and experts are usually hard-pressed to 
accurately estimate the cost of a new software program.  Therefore, while 
expert judgment models are useful in determining inputs to other types of 
models, they are not frequently used alone in software cost estimation.   

E.2.1 Delphi method 
Everyone has a bias, including experts.  Therefore, it is a good idea to obtain 
estimates from more than one expert, and there are several ways to combine 
the estimates into one.  The simplest method is to compute the mean of the 
individual estimates.  However, one or two extreme estimates can introduce 
a bias of their own. 

A second method is to lock the experts in a room until they can agree on a 
single estimate.  This method can filter out uninformed estimates but 
introduces biases of its own.  The estimate can be distorted by influential or 
assertive group members or distorted by authority figures and political 
issues. 

The Delphi Method63

1. Each expert receives a specification (problem statement) and a form 
to record estimates. 

 (or technique, since it is known by both labels) was 
originated at the RAND Corporation in 1948 as a means of predicting future 
occurrences, and has become a standard method of forming expert consensus 
and cost estimation.  The Delphi Method can be briefly summarized by the 
following procedure: 

2. Experts fill out forms anonymously.  Experts may ask questions of 
the coordinator, but cannot discuss estimates with each other. 

3. The coordinator summarizes the expert’s estimates on a form and 
requests another iteration of the expert’s estimate with the rationale 
behind the new iteration estimate. 

4. Experts fill out forms anonymously with the rationale for the 
estimate. 

5. The experts iterate steps 3 and 4 until adequate estimate 
convergence is achieved.  No discussion among experts is allowed 
until convergence. 

                                                 
63 Helmer, O. Social Technology. Basic Books, New York, NY: 1966. 

Great spirits have always 
encountered violent opposition 
from mediocre minds. 

                      Albert Einstein 
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E.2.2 Wideband delphi method 
Boehm64

1. Each expert receives a specification (problem statement) and a form 
to record estimates. 

 and others concluded the Delphi Method did not provide a wide 
enough communication bandwidth for the experts to exchange the volume of 
information necessary to calibrate their estimates with those of the other 
participants.  The Delphi technique was modified to allow this information 
exchange (Wideband Delphi Method) that is summarized in the following 
steps: 

2. The coordinator chairs a group meeting in which the experts discuss 
the problem issues with the coordinator and with each other. 

3. Experts fill out forms anonymously.   

4. The coordinator summarizes the expert’s estimates on a form 
requesting another iteration of the expert’s estimate not including 
the rationale behind estimate. 

5. The coordinator calls a group meeting that focuses on the points 
where the estimates varied. 

6. Experts fill out forms anonymously. 

7. The coordinator and experts iterate steps 5 and 6 until adequate 
estimate convergence is achieved.  No discussion among experts is 
allowed until convergence. 

E.3 Bottom-up estimating 
Bottom-up estimating, also called "grass-roots estimating" or decomposition 
provides an alternate means of projecting software costs.  It involves 
estimating costs by a detailed analysis of the cost of each unit (or computer 
software unit [CSU]), then summing unit costs to determine the cost (or 
effort) for each Computer Software Configuration Item (CSCI), and, 
possibly, the software cost for the overall system.  Bottom-up estimates tend 
to cover only the costs of developing the individual units; thus, the estimates 
are often understated.  This type of estimate is also more effort intensive than 
a top-down estimate and is usually more expensive and time consuming. 

The most effective way to implement a bottom-up estimate is to establish 
(organize) a work breakdown structure (WBS) that includes not only the 
hierarchy of the software product components, but also includes the activity 
hierarchy of the project elements such as integration, configuration 
management, and project management.  The use of the WBS to collect cost 
items ensures that all of the cost elements are accounted for. 

Bottom-up estimates are often used during proposal preparation and for 
software project cost-tracking during the development process.  This method 
has the advantage of providing a detailed cost estimate and, consequently, 
tends to be more accurate and stable than other methods.  The method also 
provides cost tracking, since separate estimates are usually conducted during 
each software development phase.   

Bottom-up estimating has several disadvantages.  Since detailed information 
about each CSU is required, it can be difficult to use during early life cycle 

                                                 
64 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc., Englewood 
Cliffs, NJ, 1981: 335. 
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phases where detailed information is unavailable.  The method is less useful 
until the detailed product architecture is complete.  A second major 
disadvantage is that the bottom-up method is not intended to produce a 
schedule estimate—a critical factor in the preparation of a development plan. 

E.4 Parametric models 
Parametric models, as described here, use one or more mathematical 
algorithms to produce a software cost and schedule estimate as a function of 
a number of variables including size, product characteristics, and 
development environment cost drivers.  Parametric models and techniques 
for software projects generally estimate costs at the system or CSCI levels.  
The CSCI costs can later be partitioned among lower-level CSUs and/or 
among life-cycle phases.  The advantages of parametric models are that they 
develop estimates quickly (efficiently), the estimates are repeatable, the 
estimates encapsulate the estimate basis, and the methods require little 
detailed information.   

Parametric models have weaknesses.  The major weaknesses are related to 
the historic basis of their formulation.  A collection of historic data is used to 
derive the cost estimating relationships (CERs) that are the basis of the 
model.  The models are representations of the data from which they are 
derived.  For example, a model derived from data obtained from schedule-
constrained projects is more likely to produce a meaningful estimate for 
another schedule-constrained project than a model derived from a broad 
range of projects, including both unconstrained and constrained projects.  
Parametric models do not generally deal with exceptional condition—such 
as Agile organizations, exceptional personnel, and management style—
unless those conditions have been specifically included in the model’s 
parameters and those parameters have been calibrated to related historic data.  
Parametric models tend to be less stable than bottom-up methods because 
they do not inherently foster individual responsibility. 

Since most software estimating today is performed using parametric models, 
it is important to emphasize that no model can compensate for poor size 
information, poor settings of the model’s parameters, lack of estimator 
experience, or willful misuse. 

E.5 Origins and evolution of parametric 
software models 
This section begins with an enlightening trip back into the fuzzy history of 
computer-based software cost and schedule estimating methods and tools.  
The first real contribution to the estimating technology occurred in 1958 
with the introduction of the Norden staffing profile65

The period from 1974 to 1981 brought most of the software estimating 
models (tools) we use today in the marketplace.  The first significant model 
publication was presented by Ray Wolverton

.  This profile, which 
defines the way staff is assigned to an engineering development, has been 
directly or indirectly incorporated into most of the estimating methodologies 
introduced since that time. 

66

                                                 
65 Norden, P.V. “Curve Fitting for a Model of Applied Research and Development 
Scheduling.” IBM Journal of Research and Development Vol. 2, No. 3, July, 1958. 

 of TRW in 1974.  Wolverton 

66 Wolverton, R.W. “The Cost of Developing Large-Scale Software.” IEEE 
Transactions on Computers June 1974: 615-636. 
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was also a major contributor to the development of the COnstructive COst 
MOdel (COCOMO)67.  Larry Putnam introduced the Software Lifecycle 
Model® (SLIM)68 in 1976, based on his work in the U.S. Army.  The third 
major contribution to the evolution of software estimating tools was the Doty 
Associates Model69 developed for the U.S. Air Force in 1977.  The Doty 
Model introduced the concept of cost drivers which was adopted by both 
Seer and COCOMO.  Seer70 was developed by Dr. Randall W. Jensen at 
Hughes Aircraft Company in 1979, followed by the publication of 
COCOMO, a model developed by Barry Boehm and Ray Wolverton at 
TRW, in 1981.  REVIC71

Each of these tools evolved slowly (refined algorithms and drivers) until 
about 1995, when significant changes were made to several models.  
COCOMO II

, a recalibration of COCOMO, was introduced in 
1988.  Seer was commercially implemented as SEER-SEMTM by Galorath 
Associates in 1990.   

72, for example, had several releases between 1995 and 1999.  
Sage73

When we look at software estimating models from a distance (like 10,000 
feet), they generally fall into one of three classes: first-, second- or third-
order.  The following sections (Sec. E.6 through E.8) describe three common 
mathematical model classes as a fundamental framework for discussion and 
comparison.  

, released in 1995, is a major redefinition of the 1979 Seer model that 
uniquely focuses on management characteristics of the developer as well as 
the development technology.   

E.6 First-order models 
The first-order model is the most rudimentary parametric estimating model 
class.  This model is, simply, a productivity factor (defining the development 
organization production capability in terms of arbitrary production units) 
multiplied by the software product effective size to obtain the development 
effort or cost.  The production units (size) can be source lines of code 
(SLOC), function points, object points, use cases, and a host of other units 
depending on one’s estimating approach.  The first-order model is the 
basis for the system-level estimating approach used in this guidebook. 

For the purpose of this discussion, we will use effective source lines of code 
(ESLOC) as the production unit measure and person hours per effective 
source line of code as the productivity measure.  The first-order estimating 
model can be summarized as:  

                                                 
67 Boehm, B.W. Software Engineering Economic. Prentice-Hall, Inc., Englewood 
Cliffs, NJ: 1981. 
68 Putnam, L H. A Macro-Estimating Methodology for Software Development. Proc. 
IEEE COMPCON 76 Fall. Sept., 1976: 138-143. 
69 Herd, J.R., J.N. Postak, We. E. Russell, and K.R. Stewart. “Software Cost 
Estimation Study – Final Technical Report.” RADC-TR-77-220, Vol. I. Doty 
Associates, Inc., Rockville, MD: June 1977. 
70 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology. 
Proc. of the Fourteenth Asilomar Conf.on Circuits, Systems, and Computers. Pacific 
Grove, CA: 17-19 Nov. 1980. 
71 Kile, R.L. REVIC Software Cost Estimating Model User’s Manual. HQ 
AFCMD/EPR, 1988. 
72 B. Boehm, A. Egyed, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. 
Selby. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0.” 
Annals of Software Engineering 1995: 295-321. 
73 Jensen, R.W. A New Perspective in Software Cost and Schedule Estimation.  Proc. 
of 1996 Software Technology Conference. Hill AFB, Ogden, UT: 21-26 Apr. 1996. 
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ekd SCE =      (E-1) 

where    dE  = the development effort in person months (PM), 

 kC  = a productivity factor (PM/ESLOC), and 

 eS  = the number of effective source lines of code (ESLOC), or 

 reusednewe SSSS 2.075.0 mod ++=   (E-2) 

where Snew = the number of new SLOC being created for the 
product, 
Smod = the number of pre-existing SLOC being modified 
for the product development, and 
Sreused = the number of pre-existing, unmodified sloc used 
in the product. 

The productivity factor is commonly determined by the product type, 
historic developer capability, or both, derived from past development 
projects.  As simple as this equation is, it is widely used to produce high 
level, rough estimates.   This model is essentially the only parametric model 
that can be effectively used prior to Milestone A because of a lack of 
available information about the development environment.  

By collecting several data points from a specific organization that is 
developing a specific product type, an average productivity factor can be 
computed that will be superior to the factors tabulated in this section for 
specific projects by a contractor.  Collecting several data points of different 
sizes will produce a size-sensitive productivity relationship.  Table E-214 
shows some typical productivity values for various types of software 
application types. 
 
A system complexity (column D) shows the relationship between the 
software type and complexity.  Complexity is defined and discussed in 
Section 10.1.  It is interesting to note that the productivity rate achieved for 
each of the software types tends to group around the associated complexity 
value.  Less complex types (higher D values) have higher productivity for 
each project size group.   

 

 

Software Type D 10  
KESLOC  

20  
KESLOC 

50  
KESLOC 

100 
KESLOC 

250 
KESLOC  

Avionics 8 12.6 14.5 17.4 20.0 24.0 

Business 15 2.1 2.4 2.9 3.3 4.0 

Command and control 10 6.3 7.2 8.7 10.0 12.0 

Embedded 8 9.0 10.4 12.4 14.3 17.2 

Internet (public) 12 2.1 2.4 2.9 3.3 4.0 

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0 

Microcode 4-8 12.6 14.5 17.4 20.0 24.0 

Process control 12 4.2 4.8 5.8 6.7 8.0 

Real-time 8 12.6 14.5 17.4 20.0 24.0 

Table E-2: Typical productivity factors (person-months per KESLOC) by size and software type 
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Software Type D 10  
KESLOC  

20  
KESLOC 

50  
KESLOC 

100 
KESLOC 

250 
KESLOC  

Scientific systems/ 
Engineering research 12 2.5 2.9 3.5 4.0 4.8 

Shrink-wrapped/ Packaged  12-15 2.1 2.4 2.9 3.3 4.0 

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0 

Telecommunication 10 6.3 7.2 8.7 10.0 12.0 

 

A simple application of Table E-2 for an effort estimate can be shown as 
follows: 

The effort required for a software development is required for a 
50,000 ESLOC avionics system.  The effort is given by 

 ekd SCE =  

 = 11.76 * 50 = 588 PM 

The corresponding productivity is 50,000/588 = 85 source lines per 
PM. 

E.7 Second-order models  
The second-order model compensates for the productivity decrease in larger 
projects by incorporating an “entropy74

( ) 2/1−nn

” factor to account for the 
productivity change.  The entropy effect demonstrates the impact of the large 
number of communication paths present in large development teams.  The 
development team theoretically has  communication paths, where 
n is the number of development personnel.  The second-order model 
becomes 

 β
ekd SCE 2=      (E-3) 

where  β is an entropy factor that measures the communication efficiency 
in the development team, and 

 eS is the number of  ESLOC, or 

 reusednewe SSSS 2.075.0 mod ++=   (E-4) 

where Snew is the number of new SLOC being created for the 
product, 
Smod is the number of pre-existing SLOC being modified 
for the product development, and 
Sreused is the number of pre-existing, unmodified sloc used 
in the product. 

An entropy factor value of 1.0 represents no productivity change with size.  
An entropy value of less than 1.0 shows a productivity increase with size, 

                                                 
74 Entropy.  An index of the degree in which the total energy of a thermodynamic 
system is uniformly distributed and is thus unavailable for conversion into work.  
Entropy in software development amounts to the energy expended in the process 
without contributing to the software product.  For example, reverse engineering of the 
existing software product is necessary, but produces no product.  Communication 
faults create errors, rework, and consumes resources, but do not contribute to the 
product. 
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and a value greater than 1.0 represents a productivity decrease with size.  
Entropy values of less than 1.0 are inconsistent with historical software 
data75

Productivity rates are obviously affected by system and CSCI component 
size as seen in the second- and third-order cost estimating models.  The size 
exponent of approximately 1.2 has a major impact on development effort.  
The second-order model is included in this appendix for completeness, but is 
not used in the system- or component-level estimating approaches described 
in this guidebook. 

.  Most of the widely used models from the 1980s (COCOMO 
embedded mode, PRICE-S, REVIC, Seer and SLIM) use entropy values of 
approximately 1.2 for Department of Defense projects.  The 1.2 value 
applies to development tasks using more than 5 development personnel.  A 
lone programmer task has a corresponding entropy factor of 1.0 since there 
is no communication issue. 

E.8 Third-order models 
The major weakness of the second-order model is its inabilityto adjust the 
productivity factor to account for variations between projects and differences 
in development environments.  For example, contractor A may have a more 
efficient process than contractor B; however, contractor A may be using a 
development team with less experience than assumed in the historic 
productivity factor.  Different constraints may be present in the current 
development than were present in previous projects.  In addition, using a 
fixed, or calibrated, productivity factor limits the model’s application across 
a wide variety of environments. 

The third-order model compensates for the second-order model’s narrow 
applicability by incorporating a set of environment factors to adjust the 
productivity factor to fit a larger range of problems.  The COCOMO form of 
this model is 

 β
e

n

i
ikd SfCE 







= ∏

=1
3     (E-5) 

where  if  = ith environment factor, and 
n = number of environment factors.  

The number of environment factors varies across estimating models, and is 
typically between 15 and 32.  The factors can be grouped into four distinct 
types: personnel, management, environment, and product. 

A list of the common environment factors used by third-order cost and 
schedule estimating models is contained in Table E-3.  Some of the factors 
are used by all models with some differences in names and definitions.  
Analyst capability (ACAP) is an example of factors common to essentially 
all models.  The definition of this parameter varies significantly across these 
models.  COCOMO and Seer (Jensen I) models use a definition based 
largely on technology.  Jensen II models use a definition that emphasizes the 
impact of management quality as well as technology. 

                                                 
75 This is a good place to point out a major difference between software and almost 
any other manufactured product.  In other estimating disciplines, a large number of 
product replications improve productivity through the ability to spread costs over a 
large sample and reduce learning curve effects.  The software product is but a single 
production item that becomes more complex to manage and develop as the effective 
size increases.   
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Schedule constraint (SCED) is a factor used only on COCOMO-based 
models.  This factor is implicit in other models.  The Multiple Organizations 
(MORG) factor is used only in Jensen II-based models.  

The third-order model is the basis for the component-level estimating 
approach used in this guidebook. 

 

 

Characteristic Acronym Group Definition 

Analyst Capability ACAP Personnel Measures the impact of front-end development personnel on 
productivity. 

Application Experience AEXP Personnel Measures application experience impact on productivity. 

Develop System Experience DEXP Personnel Measures development system experience impact on productivity. 

Develop System Volatility DVOL Support Measures development system experience impact on productivity. 

Language Experience LEXP  Personnel Measures programming language experience impact on productivity. 

Memory Constraints MEMC Product Measures the impact of product operating memory requirements on 
software development cost and schedule. 

Modern Practices MODP Support Measures development practices impact on productivity. 

Modern Tools TOOL Support Measures impact of software development tools on productivity. 

Multiple Classifications MCLS Management Measures impact of security classification separation of development 
personnel of development productivity. 

Multiple Organizations MORG Management Measures the impact of using development personnel, groups, or 
contactors on development productivity. 

Multiple Sites MULT Management Measures the impact of spreading the software CSCI development 
across multiple locations on productivity. 

Practices Experience PEXP Personnel Measures practices and procedures experience impact on 
productivity. 

Process Improvement PIMP Support Measures impact of process improvement change on productivity. 

Process Volatility PVOL Support Measures impact of development process and practice volatility on 
productivity. 

Product Complexity CPLX Product Measures the impact of inherent software product complexity on 
software development cost and schedule. 

Product Re-hosting 
Requirements 

HOST Product Measures re-hosting impact as part of the development requirements 
on software development cost and schedule. 

Product Reliability 
Requirements 

RELY Product Measures the impact of product reliability requirements on software 
development cost and schedule.  This is often divided into quality, 
documentation and test categories. 

Programmer Capability PCAP Personnel Measures the impact of programming and test personnel on 
productivity. 

Real-Time Requirements RTIM Product Measures the impact of the real-time interface requirements with the 
operational environment on software development cost and schedule. 

Required Reuse RUSE Support Measures impact of reuse requirements on development cost and 
schedule. 

Resource Support Location RLOC Management Measures the impact of hardware, system and development tool 
support personnel isolation on development productivity. 

Schedule Constraint SCED Support Measures impact of schedule compression and expansion on 
development productivity. 

Software Security 
Requirements 

SECR Product Measures the impact of product security requirements on effort and 
schedule. 

Table E-3: Environment factors used by common third-order software cost and schedule estimation models 
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Characteristic Acronym Group Definition 

Special Display Requirements DISP Product Measures the impact of user interface requirements on software 
development and schedule. 

Target System Experience TEXP Personnel Measures target system experience impact on productivity. 

Target System Volatility TVOL Product Measures the impact of target computer volatility on software 
development cost and schedule. 

Timing Constraints TIMC Product Measures the impact of Central Processing Unit timing constraints on 
software development cost and schedule. 
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Appendix F 
System-Level Estimate Case Study 

There are two fundamental estimating processes for software development: 
system and component.  The system estimating process is useful early in 
software acquisition where the software is known at only a high level.  At 
this point in time, the software is defined conceptually and software 
requirements documents have not been produced.  The component-level 
estimate will be used to perform detailed estimates of software components 
at the Computer Software Configuration Item (CSCI) level. 

The system, being just a concept or only being defined by functional 
requirements, does not yet have the system components defined.  The 
information available probably includes a very rough size estimate and 
functional areas (as shown) in Table F-1.  From the functional areas, we can 
derive an approximate productivity value from the software types and the 
associated system complexity (Cplx) in Tables F-5 and F-6.  The estimate 
developed under these conditions is still only a coarse approximation. 

F.1 HACS baseline size estimate 
The Hierarchical Autonomous Communication 
System (HACS) has been created or, rather, 
translated, as a demonstration vehicle for the cost 
estimation process.  The system contains several 
functional areas or elements.  The baseline size 
information provided in the Cost Analysis 
Requirements Document (CARD) specifies that the 
Control Data Links task has a baseline effective 
size of 320,000 source lines of code (ESLOC).  
The CARD also contains enough information to 
define the User Information Database size in 
function points.  The information at the Software 
Requirements Review (SRR) is shown in Table  
F-1.   

The CARD places each of the HACS functional 
areas into the high reliability category with the 
exception of the Brain (system/driver or process 
control functions), which falls into the very high category, and Solitaire (no 
real-time processing), which is at or below low reliability (according to 
Tables F-5, 6, and 7).  

The unadjusted function point (UFP) count for the HACS User Info 
Database software is calculated in Table F-2.  The function point values in 
the table have been derived from elements in the CARD and the HACS 
specification.  The UFP count for the Info Database task is 84.  The process 
for determining the function point count is explained in Table F-7. 

Tornadoes are caused by trailer parks. 
Norm Augustine 

 

Table F-1: Baseline description of the HACS Communication 
System at the software requirements review (concept stage) 

Task Name Size, Eff 
Baseline  

Cplx 
(D) Units 

User Info Database n/a 13 Function Points 

System Manager 219,000 11 ESLOC 

Control Data Links 320,000 12 ESLOC 

Brain 184,000 10 ESLOC 

Sensors 157,000 12 ESLOC 

Solitaire 74,000 12 ESLOC 

OS (APIs) 53,000 10 ESLOC 

System Total 1,012,000 n/a 1,165,149 
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The next step in the equivalent baseline software size calculation for the 
HACS User Info Database is to adjust the function point size to account for 
differences between the database characteristics and the normal 
characteristics assumed by the UFP count.  This involves adjusting the UFP 
count by the General System Characteristic (GSC) value adjustment factor 
(VAF) rating.  Once the 14 GSCs for the database have been evaluated, as 
demonstrated for HACS in Table F-3, the VAF can be computed using the 
IFPUG VAF equation. The equation is 




















+= ∑

=
100/65.0

14

1i
iGSCVAF            (F-1) 

where  GSCi = degree of influence for each GSC, and 
 i = 1 to 14 representing each GSC. 

The resulting VAF score will be between 0.65 and 1.35 depending on the 
sum of the individual ratings. The sum of the database GSCs is 

43
14

1
=∑

=i
iGSC  

The VAF result for the HACS Info Database is then  

VAF = 1.08.   

 

Table F-3: HACS GSC ratings 

No. General Characteristic Value No. General Characteristic Value 

1 Data communications 0 8 Online update 5 

2 Distributed data processing 4 9 Complex processing 0 

3 Performance 3 10 Reusability 0 

4 Heavily used configuration 4 11 Installation ease 4 

5 Transaction rate 5 12 Operational ease 5 

6 Online data entry 5 13 Multiple sites 4 

7 End-user efficiency 0 14 Facilitate change 4 

 

Table F-2: HACS User Info Database unadjusted function point calculation 

Component Types 
 Ranking  

Total 
Low Average High 

Internal Logical File 1 1 0 17 

External Interface File 1 3 0 26 

External Input 2 3 0 18 

External Output 0 3 0 15 

External Inquiry 0 2 0 8 

Transform 0 0 0 0 

Transition  0  0 

Unadjusted Function Points 84 
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The adjusted function point (AFP) count is obtained by multiplying the VAF 
times the UFP count.  The standard AFP count is given by: 

UFPVAFAFP ×=     (F-2)  

The AFP count for the HACS Info Database is: 

 AFP = 1.08 x 84 = 91 function points.  

                                                                                                                                                                                                                                                                                         

The conversion of function points (UFP or AFP) to equivalent source lines 
of code is accomplished by multiplying AFP by a scaling factor (backfire 
factor [BF]) to produce the total software size as 

BFAFPSt ×=       (F-3) 

where  St = total software source lines of code count, 
AFP = adjusted function point count, and 

 BF = SLOC/FP backfire factor from Table F-4. 

or, 

1.08 x 84 x 55 = 5,000 (approximately) total SLOC 

 

The resulting User Info Database effective size for the HACS 
software is presented in Table F-5 assuming the implementation 
language for the User Info Database is C++ and BF = 55.  The 
effective size is equal to the total size since there is no pre-existing 
code assumed in this value. 

The baseline effective size is the starting size for the effort analysis.  
The baseline values from the CARD are summarized in Table F-7 
Column 2.  This value assumes no software growth during 
development.  At the concept stage, the size is only a very rough 
estimate unless there is considerable historical data to support the 
estimated value. 

Table F-4: FP to SLOC conversion 

Language SLOC/FP Range  Language SLOC/FP Range 

Ada 95 49 40-71  JOVIAL 107 70-165 

Assembler, Basic 320 237-575  Object-oriented 29 13-40 

Assembler, Macro 213 170-295  Pascal 91 91-160 

BASIC, ANSI 32 24-32  PL/I 80 65-95 

C 128 60-225  PROLOG 64 35-90 

C++ 55 29-140  CMS-2 107 70-135 

COBOL (ANSI 95) 91 91-175  3rd generation 80 45-125 

FORTRAN 95 71 65-150  4th generation 20 10-30 

HTML 3.0 15 10-35  Visual Basic 6 32 20-37 

JAVA 53 46-80  Visual C++ 34 24-40 

 

Table F-5: Baseline description of the HACS 
Communication System at the start of requirements 

development (concept stage) 

Task Name Size, Eff 
Baseline  

Cplx 
(D) 

User Info Database 5,000 13  

System Manager 219,000 11 

Control Data Links 320,000 12 

Brain 184,000 10 

Sensors 157,000 12 

Solitaire 74,000 12 
Operating System (OS) 
Application Program 
Interface (APIs) 

53,000 10 

System Total 1,012,000 n/a 
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F.2 HACS size growth calculation 
The size growth factors can be obtained from Table F-6 which has been 
extracted from Tables 6-3 and 6-4.  The growth factors are determined by the 
complexity of the software functional areas (Table F-5, column 3) and from 
the maturity of the system being developed.  The factors shown for SRR 
(Table F-6 forecast the mean and maximum functional area software sizes at 
the end of full scale development.   

The mean growth factor for the HACS User Info Database software with a 
complexity value of 13 and SRR maturity is 1.13, or 13 percent.  The mean 
size growth76

650,5000,513.1 =×=meanS

 for the User Info Database is  

ESLOC 

The maximum growth factor for the HACS User Info Database software 
with a complexity value of 13 and SRR maturity is 1.46 or 46 percent.  The 
maximum growth size is 

300,7000,546.1max =×=imumS ESLOC 

Corresponding results for the remaining HACS components are also shown 
in Table F-7. 

Table F-7 assumes the same production phase for each task at the time of the 
estimate and reflects both mean and maximum effective size growth from 
the baseline effective size.   

 

                                                 
76 The mean size growth factor is an example of an “exact approximation” that crops 
up frequently in estimating.  The information in Table F-5 is truncated to 2 decimal 
places and produces a size estimate that is slightly different from the result obtained 
from Equation F-14.  Remember that both numbers are approximations. For 
simplicity, we will use the tabular information for the size estimates in the examples. 

Table F-7: Baseline description of the HACS at the start of requirements development (concept stage) 

Task Name  Size, Eff 
Baseline  

Cplx 
(D)  

Size, Eff 
Mean 

Growth Factor Size, Eff 
Maximum Mean Max 

User Info Database 5,000 13 5,650 1.13 1.46 7,300 

System Manager 219,000 11 260,610 1.19 1.64 359,160 

Control Data Links 320,000 12 371,200 1.16 1.55 496,000 

Brain 184,000 10 222,640 1.21 1.72 316,480 

Sensors 157,000 12 182,120 1.16 1.55 243,350 

Solitaire 74,000 12 85,840 1.16 1.55 114,700 

OS (APIs) 53,000 10 64,130 1.21 1.72 91,160 

System Total 1,012,000 n/a 1,192,190 n/a n/a 1,628,150 

 

Table F-6: Software growth projections as a function of maturity (M) and complexity 

  Complexity (D) 

Maturity M 8 9 10 11 12 13 14 15 
SRR (Mean) 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09 

SRR (Max.) 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29 
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F.3 HACS effort calculation 
System-level cost estimates, using either the productivity table approach or 
from the Electronic Systems Center (ESC) model, can quickly produce 
credible “ballpark” estimates.  Note, quickly does not equate to simply.  This 
case study will use both methods in parallel so the results can be compared. 
The effort projection is normally computed from the mean size growth value.  
This value represents the 50 percent probability of completion and is the best 
calculation for a realistic estimate.  The baseline size is considered an 
optimistic, or zero growth, estimate. 

The ESC estimating approach requires the software subsystems be assigned 
a reliability level, as defined in Section 4.4.2 of this guidebook.  The HACS 
software subsystems generally fall into the high reliability category with the 
exception of the Brain, which falls into the very high category and Solitaire, 
which is at or below the low category.  

Each subsystem contains CSCIs with different ratings.  Each CSCI within a 
subsystem is required to interface with one or more CSCIs as part of a 
composite system.  The interaction includes both internal interfaces as well 
as interfaces to external systems.  The number of integrating CSCIs is 
defined as the total number of CSCIs in the project.  ESC formed three 
categories based on the number of integrating CSCIs and the required 
reliability level for their productivity analysis as shown in Table F-8.  

 
The second criterion for the ESC productivity value selection is the number 
of CSCIs that interface with the selected CSCI.  We lack the information to 
determine the number of CSCIs that will ultimately be part of HACS.  As a 
precaution, it is assumed that the number of interacting CSCIs will be 
between 5 and 10.  

 

Table F-9: Productivity values for military applications by category 

Project Type 
Productivity 
(SLOC/PM) 

Productivity 
Factor 

(KSLOC/PM) 

Productivity 
Range 

(SLOC/PM) 

Standard 
Deviation 

(SLOC/PM) 

All Programs 131.7 7.60 n/a n/a 

Category 1 195.7 5.10 116.9 – 260.8 49 

Category 2 123.8 8.08 88 – 165.6 23.6 

Category 3 69.1 14.47 40.6 – 95.2 16.5 

 

Table F-8: Definition of complexity/reliability categories 

 Integrating CSCIs 

Reliability 0 - 6 CSCIs 7 - 10 
CSCIs > 10 CSCIs 

Very low - nominal 
(Moderate loss) 

Category 1 Category 1 No Data 

High 
(Major financial loss) 

Category 2 Category 2 Category 3 

Very high 
(Public safety required) 

Category 2 Category 3 Category 3 
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The ESC productivity values for each of the HACS software subsystems are 
drawn from Table F-9.  The HACS productivity values from the ESC data 
are shown in Table F-10 for each of the software subsystems.   

 
The effort analysis (estimate) for each of the HACS subsystems using the 
ESC system-level estimating approach is shown in Table F-11.  This analysis 
includes effort estimates for both mean and maximum growth effective size 
estimates. 

 
The productivity factor approach requires that we compare each of the 
HACS subsystems with the 13 system types shown in Table 7-1 to provide 
meaningful productivity factors for these types of systems.  Our system types 
do not match any of the 13 types directly, so we must select the closest 
approximation that is consistent with the assigned complexity values.  For 
example, the HACS Brain subsystem has a complexity value of 10 and a size 
value greater than 250 thousand effective source lines of code (KESLOC).  
The Brain approximates the System/Driver category of Table 7-1.  The 
associated productivity value is 83 ESLOC/PM.  This procedure must be 
applied to each of the HACS subsystems. 

The productivity table assumes an average development organization 
operating in a normal environment.  We can make subjective adjustments to 
the factors to compensate for application experience.  D represents the 
complexity value that is typical for that software type. 

Table F-11: Comparison of the development cost with mean effective size growth and maximum size growth 
using the ESC productivity model 

Task Name  Productivity 
(SLOC/PM) 

Size, Eff 
mean 

Develop 
(PM)  

Size, Eff 
Maximum 

Develop 
(PM)  

Variance 
(percent) 

User Info Database 124 5,650 45.6 7,300 58.9 29.2 

System Manager 124 260,610 2,101.7 359,160 2,896.5 37.8 

Control Data Links 124 371,200 2,993.5 496,000 4,000.0 33.6 

Brain 69 222,640 3,226.7 316,480 4586.7 42.1 

Sensors 124 182,120 1,468.7 243,350 1,962.5 33.6 

Solitaire 195 85,840 440.2 114,700 588.2 33.6 

OS (APIs) 124 64,130 517.2 91,160 735.2 42.2 

System Total  1,192,190 10,793.6 1,628,150 14,828.0 37.4 

 

Table F-10: Productivity values for the HACS at the start of 
requirements review (SRR) derived from the ESC database 

Task Name 
Size, Eff 
 Mean 

Growth 
Category Productivity 

Factor 

User Info Database 5,650 2 124 

System Manager 260,610 2 124 

Control Data Links 371,200 2 124 

Brain 222,640 3 69 

Sensors 182,120 2 124 

Solitaire 85,840 1 195 

OS (APIs) 64,130 2 124 

System Total 1,192,190   
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The productivity values for each HACS subsystem extracted from the 
productivity table are shown in Table F-12, column 2.  The results of the 
individual HACS subsystem estimates obtained from the productivity table 
are summarized in Table F-12 for both mean and maximum growth, 
assuming the project maturity for each subsystem is established at SRR.  The 
differences in the results of the ESC-based analyses (Table F-11) and the 
productivity table analysis (Table F-12) are not significant except for the 
User Info Database. The mean growth effort estimate of 10,794 PM obtained 
using the ESC approach is two percent less than the 11,005 PM in Table F-
12 estimated using the productivity table approach.   Some differences are 
not surprising since the sources of the two models are very different. 

F.4 HACS Reality check  
The easiest way to demonstrate the mechanics of a reality check is by 
example.  Of course, “real” historical data is not available for the 
hypothetical HACS project to use in a reality check.  To compensate for this 
reality problem, we assumed that an analysis of HACS at the component 
level will provide a pseudo-real level of effort; that is, a more accurate effort 
estimate.  The detailed analysis is, theoretically, more accurate than the 
system-level analysis because it allows the environment and the specific 
CSCI products to be described.  For this purpose, we continue our HACS 
example and delve into the reality of two estimates at the system level.  
Table F-13 contains a detailed component-level analysis of the HACS effort 
estimate for the maximum size projection.  This detailed analysis is used as 
the basis for our pseudo-reality check.  The detailed estimate is reported at 
the system level.  In reality, the Component columns will be replaced by data 
from a historical database.   

A cursory glance at the estimate shows productivity values that are 
reasonable and shows effort values that are roughly proportional to size.  In 
most cases, the development effort in Table F-13 from the component-level 
analysis is close to the system-level HACS estimate.  One cannot expect a 
perfect match, but the projections should be reasonably close.  The 
difference between the estimate and the validation data for the nominal case 
is not serious.  The effort of the detailed validation estimated was 16,115.2 
PM against the original estimate of 17,329.8 PM, a difference of only 7 
percent. 

Table F-12: Comparison of the development cost with mean effective size growth  
and maximum size growth using the productivity table model 

Task Name  
Productivity 

mean 
(ESLOC/PM) 

Size, Eff 
mean 

Develop 
(PM)  

Productivity 
max 

(ESLOC/PM) 
Size, Eff 

Maximum 
Develop 

(PM)  
Variance 
(percent) 

User Info Database 350 5,650 16.1 350 7,300 20.9 29.8 

System Manager 83 260,610 3,139.9 83 359,160 4,327.2 37.8 

Control Data Links 125 371,200 2,969.6 125 496,000 3,968.0 33.6 

Brain 83 222,640 2,682.4 83 316,480 3,813.0 42.1 

Sensors 135 182,120 1,349.0 125 243,350 1,946.8 44.3 

Solitaire 330 85,840 260.1 290 114,700 395.5 52.1 

OS (APIs) 109 64,130 588.3 100 91,160 911.6 55.0 

System Total 114 1,192,190 11,005.4 94 1,628,150 17,329.8 57.5 
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F.5 HACS development effort allocation 
The distribution of effort varies with the effective size of the system.  The 
larger the system the more effort will be spent in system test and integration.  
The relative effort spent in creating the architecture increases with size as 
well.  The rough effort distribution as a function of source size is presented 
in Table F-14.  See Section 4.7 of this guidebook for details about the table 
values. 

The next step in the HACS effort estimate is to determine the effort to be 
assigned to each of the development and integration activities.  The system 
test effort percentage corresponds to the value k specified in the following 
equation (F-4). The total effort is computed from the relationship  

DevelopTotal EkE ×=     (F-4) 

where ETotal is the effort including both full-scale development and the 
CSCI integration effort, 

EDevelop is the full-scale development effort, and  

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on 
the anticipated system integration difficulty (more CSCIs and more 
data passing between CSCIs makes the integration more difficult).   

The value of k from the highlighted columns in Table F-14 will be used to 
calculate the total effort for each development task.  For example, using a 

Table F-14: Total project effort distribution as a function of product size 

Size 
(KSLOC) 

Activity 

Rqmts 
(%) 

High Level 
Design (%) 

Develop 
(%) 

Sys Test 
(%) 

Mgt 
(%) 

1 4 12 77 17 11 

25 4 20 67 24 13 

125 7 22 63 25 15 

500 8 25 56 32 19 

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et 
al, 2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005. 

Table F-13: Comparison of the worst case (95%) cost analysis of the HACS software from a detailed component-
level analysis and a productivity factor (system level) analysis 

   Component Productivity Factor 

Task Name Size, Eff Cplx 
(D) 

Develop 
(PM) 

Productivity 
(ESLOC/PM) 

Develop 
(PM) 

Productivity 
(ESLOC/PM) 

User Info Database 7,300 13  36.1 202 20.9 350 

System Manager 359,160 11 3,627.9 99 4,327.2 83 

Control Data Links 496,000 12  4,203.4 118 3,968.0 125 

Brain 316,480 10 4,276.8 74 3,813.0 83 

Sensors 243,350 12 2,339.9 104 1,946.8 125 

Solitaire 114,700 12 955.8 120 395.5 290 

OS (APIs) 91,160 10 675.3 135 911.6 100 

System Total 1,628,150   16,115.2 101 17,329.8 94 
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size of 25 KSLOC, adding the 4 percent for requirements effort and 24 
percent for system test, results in a value for k of 1.28.  The total effort is the 
sum of the development effort, the requirements analysis effort and the 
system test effort.  Development effort includes high-level design, 
developing the software (code and test), and management efforts.   

A commercial standalone software product development can entail zero 
system integration.  A typical k actor is in the range of 1.21 to 1.40 for 
normal system integration requirements.   

The information in Table F-14 is used to roughly allocate the HACS effort 
defined in Table F-12 to the individual software activities.  For this case 
study, we will use the nominal (mean growth) development effort. 

Note the staffing profile for each of the subsystem developments roughly 
matches the Rayleigh-Norden staffing profile.  It can be seen in Table F-15 
as an increasing level of effort through the full-scale development with a 
decrease after delivery of the software to system test and integration.  This is 
normal for all successful software development projects.   

 
The nominal HACS system development effort distribution is shown in 
Table F-15.  The system total effort of 14,432.1 PM is greater than the sum 
of the individual development totals (11,005.4) because the requirements and 
system test are added to the system development total. 

Remember, the system-level estimating model does not allow for the 
prediction, or projection, of a software development schedule.  The schedule 
can only be produced when the system has been decomposed to the 
component (CSCI) level and estimated using a component-level estimating 
technique. 

F.6 HACS maintenance effort calculation 
Let’s look again at the nominal (mean) estimate for the HACS illustrated in 
Table F-12. The system development has been completed and delivered to 
the customer.  There are still significant errors being uncovered in the 
operation, but they are decreasing as the software matures.  Once the system 
stabilizes, from an error point of view, we assume about 8 percent of the 
software to be modified each year of operation to allow for enhancements 
(corrective, adaptive, and perfective) and knowledge retention.  The 
maintenance functions will be performed by the software developer.  What is 
the maximum annual effort necessary to support these requirements?  

Table F-15: Total project effort distribution for the nominal HACS software development 

Task Name Total 
(PM) 

Rqmts 
(PM) 

High-Level 
Design (PM) 

Develop 
(PM) 

Sys Test 
(PM) Mgt (PM) 

User Info Database 19.5 0.6 2.0 12.4 2.7 1.8 

System Manager 4,144.7 219.8 690.8 1,978.1 785.0 471.0 

Control Data Links 3.919.9 207.9 653.3 1,870.8 742.4 445.4 

Brain 3.540.8 187.8 590.1 1,689.9 670.6 402.4 

Sensors 1,780.7 94.4 296.8 849.9 337.2 202.4 

Solitaire 314.7 10.4 31.2 200.3 44.2 28.6 

OS (APIs) 711.8 23.5 70.6 453.0 100.0 64.7 

System Total 14,432.1 744.4 2,334.8 7,054.4 2,682.1 1,616.3 
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Table F-13 contains the additional complexity and productivity information 
necessary to project the annual maintenance effort, assuming the 
development staff is available to support the maintenance tasks.  That is, the 
environment and development capability will be relatively constant and 
productivity will not need to be adjusted for the maintenance calculations.   

The maintenance effort calculations (enhancement, knowledge retention, and 
steady state maintenance) are made using the Equations (4-4) through (4-6) 
in Section 4.8 of this guidebook.  The productivity figures in Table F-16 are 
extracted from Table F-13 for the maximum software growth condition.  
These productivity values are more conservative (lower) than the values that 
would be extrapolated from the mean growth productivity and yields a 
conservative maintenance effort. 

Applying Equations (4-4) through (4-6) to each of the major subsystems 
yields the anticipated annual maintenance effort for the system.  Note the 
System Manager and Brain are dominated by the Annual Change Traffic 
effort and the remaining subsystems are driven by the number of people 
needed to retain operational system knowledge.  The bulk of the personnel 
will come from the operational knowledge staff.  The two elements, singled 
out in the maintenance calculation, will have to add staff to assure support 
for the enhancements and modifications.  The annual maintenance effort is 
projected to be approximately 1,019 person months per year of operation.  
The time at which the maintenance costs balance the development effort of 
11,005 PM is near 10 years.  Maintenance effort can match the development 
effort in as few as five years, depending on the program quality and change 
traffic.  Therefore, this maintenance effort estimate is relatively modest. 

Table F-16: Maximum effort analysis of the HACS Communication System from a productivity factor 
(system level) analysis including annual maintenance effort 

   Productivity Factor 

Task Name Size, Eff Cplx 
(D) 

Develop 
(PM) 

Prod 
(ESLOC/PM) 

Maintenance 
(PM/YR) 

User Info Database 5,650 13  16.1 350 4.0 

System Manager 260,610 11 3139.9 83 250.6 

Control Data Links 371,200 12  2969.6 125 284.9 

Brain 222,640 10 2682.4 83 214.7 

Sensors 182,120 12 1349.0 125 139.8 

Solitaire 85,840 12 260.1 290 65.9 

OS (APIs) 64,130 10 588.3 100 59.0 

System Total 1,192,190   11,005.4 114 1,018.9 
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Appendix G 
Component-Level Estimate Case 

Study 
There are two fundamental estimating processes for software development: 
component and system. The component estimating process is generally used 
after details are available for the system, such as architectural design.  At this 
point in time, the system definition will have functional component 
requirements defined (Software Requirements Specifications -- SRSs) and 
the interfaces between components defined (Interface Control Documents --
ICDs).  The developer may be known at this time, or at least the developer 
class will be known well enough that the typical characteristics can be 
defined.   

The material in this appendix demonstrates developing estimates at the 
component level and is supported by the same case study introduced in 
Appendix F.  Evolving fragments of the estimate will be updated as each 
step, or portion of a step, is completed.  The Hierarchical Autonomous 
Communication System (HACS) system contains several components 
(CSCIs).   

G.1 HACS baseline size 
estimate 
HACS has been created or, rather, translated as a 
demonstration vehicle for the cost estimation process.  
The system contains several subsystems that have been 
refined to the component (CSCI) level.  The component 
size information at the start of the estimate is shown in 
Table G-1.   

The Cost Analysis Requirements Description (CARD) 
specifies the Control Data Links, with a forecast 
baseline size of 320,000 effective source lines of code 
(ESLOC), and the User Info Database, specified in 
function points (FPs). Since the effective size of the 
Control Data Links subsystem is too large to be 
developed as a single CSCI (i.e., > 200,000 effective 
source lines of code [ESLOC]), a realistic component-
level estimate cannot be completed without further 
decomposition.  Some estimating tools, however, allow 
a CSCI to be greater than 200,000 ESLOC, but the 
estimate results will be questionable since insufficient  
historical data exists (little to none) to support the tools 
in this size region.  Also, since FPs are involved in the 
system size specification, they must be converted to 
ESLOC before the estimate can proceed77

CARD specifications place the HACS software 
subsystems generally into the High reliability category 

. 

                                                 
77 The information regarding the conversion of function points to SLOC in this 
section is essentially a duplicate of the conversion described in Section 6.   

An estimate is the most optimistic 
prediction that has a non-zero 
probability of coming true. 

         Tom DeMarco  

Table G-1: Baseline description of the HACS Communication 
System at the start of requirements review (SRR) 

Task Name Size, Eff 
Baseline  Cplx Units 

User Info Database 
(DB) n/a 13 FP 

  Glue code for DB n/a 13 FP 

  DB Configuration n/a 0 FP 

System Manager 219,000 11 ESLOC 

Control Data Links 320,000 12 ESLOC 

Satellite 152,000 12 ESLOC 

Transmitter 96,000 12 ESLOC 

Receiver 56,000 12 ESLOC 

Radio 84,000 12 ESLOC 

Fiber link 84,000 12 ESLOC 

Brain 184,000 10 ESLOC 

Sensors 157,000 12 ESLOC 

Solitaire 74,000 12 ESLOC 
Operating System 
(OS) Application 
Program Interfaces 
(APIs) 

53,000 10 ESLOC 

System Total 1,012,000   ESLOC 
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with the exception of the Brain, which falls into the Very High category, and 
Solitaire, which is at or below the Low category. 

The system-level estimate of the HACS example in Appendix F assumed the 
major subsystems were defined at only the system level.  From that level, a 
“ballpark” estimate for the entire HACS software product was constructed.  
It was impossible to create a component level estimate because several of the 
subsystems were above the “magic” 200,000 ESLOC CSCI size limit.  In 
this estimate, the components (CSCIs) have been defined, and a more refined 
and accurate estimate can be constructed for the development.    

The expanded portion (to the CSCI level) is shown in the white and yellow 
areas of Table G-1.  The nominal analysis assumes the estimate is being 
made at the time of the Software Requirements Review (SRR) and effective 
size reflects the baseline level of software growth.  For example, the baseline 
size of the Brain software contains 184,000 ESLOC.  Note the Brain baseline 
size is near the 200,000 ESLOC limit and can create problems as the 
estimate progresses if growth and/or risk are involved. 

G.2 HACS size estimate 
Size is the most important effort (cost) and schedule driver in any software 
development estimate.  Size information early in a project is seldom, if ever, 
accurate.  Information presented in a CARD is generally predicted during a 
concept development phase prior to the start of full-scale development (pre-
Milestone B).  Size information is often represented by a single value which 
leads to a point cost and schedule estimate. However, the information may 
be more accurately expressed as three values representing a minimum (most 
optimistic), a most likely, and a maximum (most pessimistic), to give a more 
realistic picture of the software size information. 

The HACS User Info Database software is initially specified as FPs for the 
development estimate.  The unadjusted function point (UFP) count is shown 
in Table G-2.  Since FPs are involved in the system size specification, they 
must be converted to SLOC before the estimate can proceed to the ultimate 
specification of the system size.  The FP values in the table have been 
derived from the HACS specification.  The UFP count for the Info Database 
task is 84. 

 
The next step in the equivalent baseline software size calculation for the 
HACS User Info Database is to adjust the FP size to account for differences 

Table G-2: HACS Info Database unadjusted function point calculation 

Component Types 
 Ranking  

Total 
Low Average High 

Internal Logical File 1 1 0 17 

External Interface File 1 3 0 26 

External Input 2 3 0 18 

External Output 0 3 0 15 

External Inquiry 0 2 0 8 

Transform 0 0 0 0 

Transition  0  0 

Unadjusted Function Points 84 
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between the database characteristics and the normal characteristics assumed 
by the UFP count.  This involves adjusting the UFP count by the General 
System Characteristics (GSCs) Value Adjustment Factor (VAF) rating.  
Once the 14 GSCs for the database have been evaluated, as demonstrated for 
HACS in Table G-3, the value adjustment factor can be computed using the 
IFPUG VAF equation.  The equation is 
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where  GSCi = degree of influence for each GSC, and 
 i = 1 to 14 representing each GSC. 

The resulting score will be between 0.65 and 1.35, depending on the sum of 
the individual ratings. The sum of the GSCs for the database is 
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The VAF result for the HACS Info Database is then  

VAF = 1.08   

The adjusted function point (AFP) count is obtained by multiplying the VAF 
times the UFP count.  The standard AFP count is given by 

UFPVAFAFP ×=     (G-2)  

The AFP count for the HACS Info Database is 

 AFP = 1.08 x 84 = 91 FPs.                                                                                                                                                                                                                                                                                          

The conversion of FPs (UFP or AFP) to equivalent total SLOC is 
accomplished by multiplying AFP by a scaling factor (backfire factor [BF]) 
to produce the total size as 

BFAFPSt ×=       (G-3) 

where  St = total software SLOC count, 
AFP = adjusted FP count, and 

 BF = SLOC/FP backfire factor from Table 6-17 

or, 

1.08 x 84 x 55 = 5,000 (approximately) total SLOC. 

Table G-3: HACS GSC ratings 

No. General Characteristic Value No. General Characteristic Value 

1 Data communications 0 8 Online update 5 

2 Distributed data processing 4 9 Complex processing 0 

3 Performance 3 10 Reusability 0 

4 Heavily used configuration 4 11 Installation ease 4 

5 Transaction rate 5 12 Operational ease 5 

6 Online data entry 5 13 Multiple sites 4 

7 End-user efficiency 0 14 Facilitate change 4 
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The resulting User Info Database effective size for the HACS software is 
presented in Table G-4 assuming the implementation language for the User 
Info Database is C++ and BF = 55.  Note: the resulting source code value is 
for baseline total source code.  There is no pre-existing code assumed in this 
value, and the computed equivalent size does not assume any size growth 
during the project development. 

 
The baseline size is the starting size for the effort analysis.  The baseline 
values from the CARD are summarized in Table G-4, column 2.  These 
values assume no software growth or difficulty during development.  At the 
concept level, the size is only a very rough estimate unless there is 
considerable historic data to support the value. 

G.3 HACS size growth calculation  
The software requirements have been developed and the size projections 
have been somewhat refined at this point in time.  There has already been 
some size growth since the concept phase of the development – this is 
included in the current baseline.  Our task is to project the growth from SRR 
to delivery of the HACS product.  The size information shown in Table G-4, 
columns 2 and 3, represents the baseline size and complexity projected at the 
beginning of SRR.   

The size growth factors can be obtained from Table G-5 which has been 
extracted from Tables 6-3 and 6-4.  The growth factors are determined by the 
complexity of the software product and from the maturity of the product at 
the time the estimate is being made.  The factors project the mean and 
maximum product sizes at the end of development. The rows in Table G-5 
correspond to a project maturity at the start of SRR.   

Table G-4: Baseline description of the HACS Communication 
System at the start of requirements review (SRR) 

Task Name Size, Eff 
Baseline  Cplx  Units 

User Info Database    

  Glue code for DB 5,000 13 Function Points 

  DB Configuration    

System Manager 219,000 11 ESLOC 

Control Data Links 320,000 12 ESLOC 

Satellite 152,000 12 ESLOC 

Transmitter 96,000 12 ESLOC 

Receiver 56,000 12 ESLOC 

Radio 84,000 12 ESLOC 

Fiber link 84,000 12 ESLOC 

Brain 184,000 10 ESLOC 

Sensors 157,000 12 ESLOC 

Solitaire 74,000 12 ESLOC 

OS (APIs) 53,000 10 ESLOC 

System Total 1,012,000   ESLOC 
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The mean growth factor for the HACS User Info Database software with a 
complexity value of 13 and SRR maturity is 1.13 or 13 percent.  The mean 
size growth factor78

650,5500013.1 =×=meanS

 is  

  ESLOC  (G-4) 

The maximum growth factor for the HACS User Info Database software 
with a complexity value of 13 and SRR maturity is 1.46, or 46 percent.  The 
maximum growth size is 

7300500046.1max =×=imumS   ESLOC  (G-5) 

Corresponding results for the remaining HACS components are shown in 
Table G-6.  The table assumes all components are in the same production 
phase at the time of the estimate.  The mean and maximum effective size 
growth is computed from the baseline effective size.  

 
The effort and schedule projections are normally computed from the mean 
size growth value.  This is the best calculation for a realistic estimate.  The 
probability of the baseline size existing at the end of development is very 
small and the delivery schedule and development effort are unlikely.  

                                                 
78 The mean size growth factor is an example of an “exact approximation” that crops 
up frequently in estimating.  The information in Table G-5 is truncated to two 
decimal places and produces a size estimate that is slightly different from the result 
obtained from Equation 6-14.  Remember that both numbers are approximations. For 
simplicity we will use the tabular information for the size estimates in the examples. 

Table G-6: Baseline description of the HACS Communication System at the start of requirements 
development 

Task Name Size, Eff 
Baseline 

Cplx
  

Size, Eff 
Nominal 

Growth Factor Size, Eff 
Maximum Nom Max 

User Info Database 5,000  5,650     7,300 

Glue code for DB 5,000 13 5,650 1.13 1.46 7,300 

DB configuration          

System Manager 219,000 11 260,610 1.19 1.64 359,160 

Control Data Links 320,000 12 371,200     496,000 

Satellite 152,000 12 176,320     223,201 

Transmitter 96,000 12 111,360 1.16 1.55 140,969 

Receiver 56,000 12 64,960 1.16 1.55 82,232 

Radio 84,000 12 97,440 1.16 1.55 123,348 

Fiber link 84,000 12 97,440 1.16 1.55 123,348 

Brain 184,000 10 222,640 1.21 1.72 316,480 

Sensors 157,000 12 182,120 1.16 1.55 243,350 

Solitaire 74,000 12 85,840 1.16 1.55 114,700 

OS (APIs) 53,000 10 64,130 1.21 1.72 91,160 

System Total 1,012,000   1,192,190   1,628,150 

 

Table G-5: Software growth projections as a function of maturity (M) and complexity. 

  Complexity 

Maturity M 8 9 10 11 12 13 14 15 
SRR (Mean) 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09 

SRR (Max) 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29 
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The nominal effective size that will be used in the HACS cost and schedule 
calculations corresponds to the mean product size growth.  The baseline size 
is considered an optimistic, or zero growth, estimate. 

G.4 HACS environment  
The next step in the HACS component-level estimate is an evaluation of the 
software environment.  This evaluation is conducted in two parts: (1) an 
estimate of the developer capability of each subsystem, or in the case that a 
single contractor (developer) may be responsible for multiple subsystems, an 
estimate of each developer’s capability, and (2) an estimate of the remaining 
environment factors for each CSCI that are impacted by the HACS product 
development.  Each CSCI can have a unique set of experience, development 
system, management, and product factors. 

G.4.1 HACS developer capability  
The HACS development organization is assumed to employ 
an average development staff located in a facility with a 
typical cubical arrangement.  The application experience of 
the development team is an average of 3 to 5 years in systems 
similar to HACS.  The CMMI rating is Level 2 and preparing 
for a Level 3 evaluation.  The hardcopy turnaround time, a 
measure for computing resource access, is less than 30 
minutes.  Terminal response time is approximately 500 
milliseconds.  The series of calculations—outlined earlier in 
Section 5.4.4, Equation (5-4)—yields a basic technology 
constant for the HACS software development organization.  
The HACS basic technology rating results are shown in 
Table G-7. 

G.4.2 Personnel evaluation 
The personnel in the HACS project, shown in Table G-8, 
are assumed to be trained in the development system and 
associated practices.  A value of 1.0 indicates no impact 
on the development.  There is an average experience level 
of slightly less than two years using the development 
system.  There are no changes in development practices 
planned during the development; hence, there is no 
impact.  Process improvement would increase the 
practices experience (PEXP) value if the development 
organization imposed development practices on the 
project.  The process changes will not impact this project.  
The programmers are masters of the required 
programming language.  In this example, the language is C++. 

The HACS management factors show actions that will have an impact on 
productivity.  The development organization will be using personnel from 
other organizations, and the software development will be accomplished 
with the development people spread across multiple sites in close proximity.  
The combined impact (product) of these parameters (MORG and MULT) 
amounts to approximately an 18 percent productivity penalty.   

Table G-8: Personnel parameter values for HACS estimate 
Parameter Value 

Development system experience - DEXP 1.01 

Programming language experience - LEXP 1.00 

Development practices experience – PEXP 1.00 

Target system experience - TEXP 1.00 

Multiple organizations - MORG 1.10 

Multiple development sites - MULT 1.07 

 

Table G-7: Parameter values for basic capability estimate 
calculation 

Parameter Value 

Analyst capability – ACAP 1.00 

Application domain experience – AEXP 0.89 

Programmer capability – PCAP 1.00 

Use of modern practices – MODP 1.04 

Automated tool support – TOOL 1.03 

Hardcopy turnaround time – TURN 0.93 

Terminal response time – RESP 1.00 

Basic Technology Constant 6474 
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G.4.3 Development environment  
The HACS development environment is the third project environment area 
of interest.  The environment parameters determine the impact of the 
stability and availability of the environment; that is, the volatility of the 
development system and associated practices, the proximity of the resource 
support personnel, and access to the development system.   

The HACS development practices are expected to 
experience minor changes on a monthly average during the 
development due to process improvement.  Process 
improvement should ultimately improve productivity, but 
will decrease productivity in the short term until the new 
practices stabilize.  The development system will show 
productivity loss during system updates that will also 
occur on a monthly average.  These are normal conditions.  
The resource and support personnel are not located in the 
software development areas, but are within 30 minutes in 
case of system or compiler problems.  System access is 
100 percent of the first shift workday, so there will be no 
impact due to limited access.  The HACS development 
environment parameter values are shown in Table G-9.  

The combined impact on development productivity of this parameter group 
is approximately 25 percent beyond the ideal environment. The individual 
parameter ratings are described in more detail in Section 8 of this guidebook. 

G.4.4 HACS product impact 
The fourth environment factor group is used to evaluate 
the impact of the product characteristics and constraints 
on the project productivity.  The information in this group 
is reasonably constant for a given product type, and can 
be collected in a template that may have only a few 
changes within the product type due to specific product 
implementations.  Within the HACS system, as shown in 
Table G-10, there are several CSCI types that could be 
defined as multiple product templates for the effort and 
schedule analysis. 

The HACS project requires all development personnel to 
have the same security clearance level so there is no 
productivity loss due to the personnel working across 
security boundaries.  The system requires a user-friendly 
interface which results in more complicated design and 
test activities; thus, a penalty of 5 percent is specified.  
There are no hardware re-hosting requirements.  The 
product is not memory constrained and there are no real-
time requirements or timing constraints.  The Common 
Criteria Evaluation Assurance Level (CC EAL) rating79

                                                 
79 The CC for Information Technology Security Evaluation is an international 
standard (ISO/IEC 15408) for computer security. 

 
for the product is Level 1 except for the Brain (a complex 
system/driver or process control function), which has a CC EAL rating of 
Level 4.  The target system is in common use and is stable.  The required 
reliability for the development is satisfied by following the ISO/IEC 12207 

Table G-9: Development environment parameter values for 
HACS estimate 

Parameter Value 

Practices volatility - PVOL 1.08 

Development support location - RLOC 1.08 

Development system volatility - DVOL 1.07 

Development system dedication - RDED 1.00 

 

Table G-10: Product impact parameter values for HACS 
estimate 

Parameter Value 

Multiple security classification - MCLS 1.00 

Special display requirements - DISP 1.05 

Dev. To Target system rehost - HOST 1.00 

Target memory constraints - MEMC 1.00 

Product quality requirements - QUAL 1.03 

Real-time requirements - RTIM 1.00 

Requirements volatility - RVOL 1.15 

Software security requirements - SECR 1.00 - 1.34 

Product development standards - SPEC 1.21 

Product test requirements - TEST 1.05 

Product timing constraints - TIMC 1.00 

Target system volatility - TVOL 1.00 
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standard.  The penalties corresponding to the ISO standard are specified in 
the QUAL, SPEC and TEST parameters. 
   
The requirements volatility definition we will follow for the HACS software 
is “known product with occasional moderate redirection,” since the product 
will have some functionality improvements beyond the existing products.   

The combined productivity impact beyond the ideal environment is 58 
percent for the bulk of the system, but 112 percent for the Brain.  The 
penalties may seem high at first glance, but the change is from the ideal 
which does not occur in practice.  The individual parameter ratings are 
described in more detail in Section 8 of this guidebook. 

G.4.5 HACS effective technology constant   
The productivity factor for Jensen-based models is the effective technology 
constant Cte defined in more detail in Section 5.4.5, Equation (5-5).  This 
equation combines the basic technology constant with the product of the 
development environment factors if .  The resulting productivity factor is 

∏
=

i
i

tb
te f

C
C          (G-6) 

The median productivity factor Cte for the HACS software development is 
computed to be 

150,3
)18.125.158.1(

474,6
=

××
=teC                        (G-7) 

The mean value, considering the worst case value of 3,150, is 
shown in Table G-11.  The effective technology constant for 
the Brain is 2,351, a 34 percent drop compared to the bulk of 
the system.  This is due to the EAL security rating of Level 4.  
The HACS technology constant values are shown in Table G-11. 

A 2:1 ratio of the basic and effective technology constants is common.  It is 
not uncommon for ratios of 4:1 to exist for highly constrained or secure 
software systems. 

G.5 HACS development effort and 
schedule calculations 
The cost analysis of the HACS software is conducted at the component 
(CSCI) level and rolled up into the next higher level.  For example, the 
Transmit and Receive components are estimated and rolled up into the 
Satellite super component.  The Radio and Fiber Link components are 
estimated and rolled up with the Satellite into the Control Data Links 
subsystem.  Each of the components is within the range of 5,000 to 200,000 
ESLOC (except for the System Manger and the Brain) and compatible with 
the limitations of the estimating models and reality.  Some estimating models 
allow component sizes greater than 200,000 ESLOC, but reality places a 
limit of 200,000 ESLOC on deliverable software components.    

The result of the HACS estimate under mean software growth conditions is 
presented in Table G-12. The worst case growth estimate is contained in 

  Table G-11: Technology constant values for HACS estimate 

Parameter Value 

Basic technology constant - Ctb 6,474 

Effective technology constant - Cte 3,150 / 2,351 
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Table G-13.  The calculations for these estimates were performed by the 
Sage 3 estimating tool which is based on the Jensen II model. 
 

 

Table G-12: Nominal effort and schedule (in months) analysis of the HACS at the component (CSCI) level 

Task Name Ctb Cte Size, Eff Cplx Develop 
(PM) 

Total 
Effort 
(PM) 

Prod 
(ESLOC/PM) 

Dev 
Sched 
(mo) 

Total 
Sched 
(mo) 

User Info Database     5650 13  30.7 46.6 212.6 9.0 12.0 

Glue code for DB 6416 3150 5650 13 26.7 38.6 212.6 9.0 12.0 

DB Configuration         4.0 8.0   3.0 4.0 

System Manager  6416 3150 260,610 11 2455.9 3544.2 105.8 43.4 57.7 

Control Data Links     371,200 12 2,973.2 4290.6 125.5 30.4 40.4 

Satellite 6416 3150 176,320 12 1403.6 2025.6 127.9 30.4 40.4 

Transmit 6416 3150 111,360 12 921.2 1329.4 121 30.4 40.4 

Receive 6416 3150 64,960 12 482.4 696.2 134.8 24.5 32.6 

Radio 6416 3150 97,440 12 784.8 1132.5 124.3 28.8 38.3 

Fiber Link 6416 3150 97,440 12 784.8 1132.5 124.3 28.8 38.3 

Brain 6416 2351 222,640 10 2795.0 4033.6 79.8 46.8 62.2 

Sensors 6416 3150 182,120 12 1622.2 2398.8 109.7 37 49.2 

Solitaire 6416 3150 85,840 12 674.0 972.7 127.5 27.4 36.4 

OS (APIs) 6416 3150 64,130 10 441.8 637.6 145.3 25.3 33.6 

System Total   1,192,190   10,992.8 15,924.1 106.6 43.4 57.7 

 
Table G-13: Worst-case effort and schedule analysis of the HACS at the component (CSCI) level 

Task Name  Ctb  Cte Size, Eff  Cplx Develop 
(PM) 

Total 
Effort 
(PM) 

Prod 
(ESLOC/PM) 

Dev 
Sched 
(mo) 

Total 
Sched 
(mo) 

User Info Database     7321 13  40.2 60.3 202 13.1 17.4 

Glue code for DB 6474 3150 7321 13 36.2 52.3 202 10.1 13.4 

DB Configuration         4.0 8.0   3.0 4.0 

System Manager  6474 3150 358,309 11 3612.0 5212.6 99.2 49.3 65.6 

Control Data Links     496,035 12  4205.3 31,854.8 118.4 34.1 45.4 

Satellite 6474 3150 235,617 12 1985.3 2865.1 120.7 34.1 45.4 

Transmit 6474 3150 148,811 12 1302.9 1880.3 114.2 34.1 45.4 

Receive 6474 3150 86,806 12 682.4 984.8 127.2 27.5 36.6 

Radio 6474 3150 130,209 12 1110.0 1601.9 117.3 32.3 43 

Fiber Link 6474 3150 130,209 12 1110.0 1601.9 117.3 32.3 43 

Brain 6474 3150 316,869 10 4262.5 6151.4 74.3 53.8 71.6 

Sensors 6474 3150 243,368 12 2351.1 3393.0 103.5 41.5 55.2 

Solitaire 6474 3150 114,708 12 953.4 1375.9 120.3 30.8 40.9 

OS (APIs) 6474 3150 91,272 10 673.7 972.3 135.5 29.1 38.7 

System Total   1,627,882  16,094.2 47,198.5 101.2 49.3 65.6 
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There are two important items to note in Tables G-12 and G-13.  First, a 
fixed effort is added to the User Info Database CSCI that is not estimated 
using the system- or component-level approaches described in Sections 4 
and 5.  The addition is included to account for the effort required to 
configure the database. 
 
Second, nominal (Table G-12) Brain component size is 222,640 ESLOC, 
which violates the reality size constraint and has an estimated schedule of 
62.2 months, which violates the reality schedule constraint.  Table G-13 
Brain size is 316,869 ESLOC, which has a very small probability of success 
if built as identified based on historical data.  The estimate of this component 
is outside the data upon which the estimating models and tools have been 
built. 

G.6 Verify HACS estimate realism 
The easiest way to demonstrate the mechanics of a reality check is by 
example.  Table G-12 contains the HACS effort and schedule estimate at the 
component level for the most likely size projection.  Since there is no 
historical data available for the reality check, we will use the Productivity 
Factor Table (from the earlier Section 4.4.1, Table 4-5), which is based on a 
collection of historical data. The two components of the satellite subsystem 
within the Control Data Links are typical telecommunication systems.  
Without interpolating between columns in the table, the nearest size column 
is 100K ESLOC.  The Transmit component has an estimated productivity of 
114 ESLOC/PM and the Receive component productivity is 127 
ESLOC/PM.  The table reference productivity of 100 ESLOC/PM is within 
27 percent of the two estimated productivity values.  This error is not 
excessive considering that the values in the table do not reflect the developer 
or the development environment for the HACS project.  The productivity 
table does not allow any comparison of the estimated schedules for reality 
check purposes. 

A cursory glance at the estimate shows nominal productivity and effort 
values which are roughly proportional to size.  However, the schedule values 
are inconsistent; that is, the longest and shortest schedules are not 
proportional.   

In most cases, the effort in Table G-12 does not disagree greatly with the 
system level HACS estimate using the productivity factor data from Table 4-
5.  One cannot expect a perfect match, but the projections should be 
reasonably close.  

The System Manager and the brain are larger than the 200K ESLOC limit 
assuming mean growth.  At this point in the development, this can occur due 
to two basic reasons.  First, the detailed requirements allocations have not 
been identified and therefore we are creating an effort (cost) allocation for 
the subsystem.  The second reason is that there are classified components in 
this subsystem and to keep the document unclassified, the requirements are 
not detailed.   Care must be taken in either case that these CSCIs are 
carefully tracked to ensure that they do not derail the project. 
 
CSCIs with an effective size larger than 200,000 ESLOC are likely to be 
undeliverable although there are exceptions to every rule.  The HACS 
system as a whole fits the telecommunication category task better than any 
other.  We must apply judgment to the subsystems in the HACS system 
using the modified McConnell data.  For example, the Brain task is most like 
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an embedded system but is beyond the 200K ESLOC boundary.  If we 
extrapolate the Brain productivity to the 250K ESLOC column, we would 
find that the estimated productivity of 74 ESLOC/PM is within 11 percent of 
the 83 ESLOC/PM entry in Table 7-1. 

The Brain and the System Manager CSCIs exceed the 200 KESLOC size 
limit.  Persisting with the current composition of the Brain and System 
Manager are likely to create undeliverable products.  The schedule for the 
Brain as an example, assuming it is a single CSCI, is almost 72 months, or 
six years.  Again, the schedule indicates a non-deliverable product because 
we look for a schedule of five years or less.  The Brain can (must) be 
decomposed into smaller CSCIs which will, in turn, decrease the required 
schedule by developing it in smaller components.  The smaller components 
will achieve higher productivity, which will improve the development effort 
and delivery potential. 

The Brain is a candidate for previously created and  CC EAL certified 
software (either GOTS or COTS) which could effectively reduce the size of 
the subsystem.  

A second part of any reasonable estimate is the consideration of risk.  
Software risk often presents itself as an effective size increase.  Table G-12 
shows the HACS system estimate assuming mean size growth.  Table G-13 
shows the worst case size or risk projection. 

G.7 Allocate HACS development effort 
and schedule 

G.7.1 HACS effort allocation 
The distribution of effort varies with the effective size of the system.  The 
larger the system the more effort will be spent in system test and integration.  
The relative effort spent in creating the architecture increases with size as 
well.  The rough effort distribution as a function of source size is presented 

in Table G-14.  

The next step in the HACS effort estimate is to assign the effort to each of 
the development and integration activities.  If system integration is to be 
included in the total system development, the effort computed in the last step 
must be increased to account for the total system development cost.   

Table G-14: Total project effort distribution for the HACS software development 

Task Name 
Activity 

Rqmts 
(%) 

High-Level 
Design (%) 

Develop 
(%) 

Sys Test 
(%) 

Mgt 
(%) 

User Info Database 4 10 64 17 9 

System Manager 8 17 38 32 13 

Control Data Links 8 17 38 32 13 

Brain 8 17 38 32 13 

Sensors 8 17 38 32 13 

Solitaire 7 16 48 25 11 

OS (APIs) 7 16 48 25 11 
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The total effort is computed from the relationship 

DevelopTotal EkE ×=     (G-8) 
 
where ETotal is the effort including both full-scale development and the 

CSCI integration effort, 

EDevelop is the full-scale development effort, and  

k = 1.21 to 1.32 depending on the anticipated system integration 
difficulty.   

The value of k from the highlighted columns in Table G-14 will be used to 
calculate the total effort for each development task.  For example, using a 
size of 25 KESLOC, adding the 4 percent for requirements effort and 24 
percent for system test results in a value for k of 1.28.  The total effort is the 
sum of the development effort, the requirements analysis effort and the 
system test effort.  Development effort includes high-level design, 
development, and management efforts.   

A commercial standalone software product development can entail zero 
system integration.  A typical k factor is in the range of 1.21 to 1.32 for 
normal system integration requirements.  In this example, the value of k from 
the highlighted columns in Table G-14 will be used to calculate the total 
effort for each development task.  

The resulting effort allocation for the mean growth (nominal) condition is 
summarized in Table G-15.  The effort allocation process for the baseline 
and maximum growth conditions are computed in the same fashion as the 
mean growth condition. 

 

Table G-15: Nominal effort allocation for the HACS Communication System at the component (CSCI) level 

Task Name 
Size, Eff 
(Nominal 
ESLOC) 

Total 
Effort 
(pm) 

Rqmts 
(pm) 

High-
Level 

Design 
(pm) 

Develop 
(pm) 

Sys 
Test 
(pm) 

Mgt 
(pm) 

User Info Database 5650 46.6 1.5 3.9 32.7 6.6 3.5 

Glue code for DB 5650 38.6 1.5 3.9 24.7 6.6 3.5 

DB Configuration   8.0     8.0    

System Manager  259,804 3544.2 283.5 602.5 1,346.8 1,134.1 460.7 

Control Data Links 371,561 4,290.6  300.4 686.5 2,059.5 1,072.6 472.0 

Satellite 176,491 2025.6 141.8 324.1 972.3 506.4 222.8 

Transmit 111,468 1329.4 93.1 212.7 638.1 332.3 146.2 

Receive 65,023 696.2 48.7 111.4 334.2 174.1 76.6 

Radio 97,535 1132.5 79.3 181.2 543.6 283.1 124.6 

Fiber Link 97,535 1132.5 79.3 181.2 543.6 283.1 124.6 

Brain 222,917 4033.6 322.7 685.7 1,532.8 1,290.8 524.4 

Sensors 182,297 2398.8 167.9 383.8 1,151.4 599.7 263.9 

Solitaire 85,923 972.7 68.1 155.6 466.9 243.2 107.0 

OS (APIs) 64,210 637.6 44.6 102.0 306.0 159.4 70.1 

System Total 1,192,392 15,924.1 1,199.5 2,643.8 6,655.9 4,674.4 1,949.5 
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Note that the effort allocation for the Brain and the System Manager are 
suspect because the total effort calculation is derived from a faulty 
assumption that the components are being developed as single CSCIs.  The 
sizes are beyond the 200,000 ESLOC limit for single CSCIs.  The Brain and 
System Manager each will likely be decomposed into at least two CSCIs 
before the start of development.  If they are not decomposed, they become 
high risk developments.  

The effect of CSCI complexity can be seen in Table G-15 as an increasing 
level of effort through the full-scale development with a decrease after 
delivery of the software to system test and integration.  The total effort for 
each task within the HACS project is incorporated in the total effort 
requirements for the nominal HACS analyses.  The total effort is computed 
from the information in the project effort distribution table (Table G-14).   

G.7.2 Schedule allocation 
Schedule allocation depends on the effective size of the software system 
AND the software development approach.  A classic waterfall development 
will meet schedule milestones at different times than an incremental or an 
agile development.  There are some guidelines that serve to place 
approximate milestones for ballpark estimates.  The broad schedule 
breakdown is shown in Table G-16.  Allocating milestones in the program 
plan requires the number ranges to be reduced, again depending on the 
development approach. 

Using the schedule breakdown table described in Section 5.7.2, we see that 
the baseline and mean and maximum growth sizes for the command and 
control project are all close enough to the 125 KESLOC entry in that we can 
apply the percentage allocation for each activity directly from the table.  The 
table is repeated here (Table G-16) for reference.   

The overall schedule distribution for a project is based on the entire process 
totaling 100 percent of the schedule.  Judgment is necessary when selecting 
the specific values from the table for the project in question. The percentages 
in Table G-16 for the HACS project are enclosed in parentheses. 

The schedule allocation for the HACS project is presented in Table G-17.  
As with the effort allocation, the schedule allocation for both the Brain and 

Table G-16: Approximate schedule breakdown as a function of product size 

Size 
(KSLOC) 

Activity 

Requirements 
(Percent) 

High-Level 
Design 

(Percent) 

Development 
(Percent) 

System 
Test 

(Percent) 

1 6-16 (6) 15-25 (20) 50-65 (55) 15-20 (19) 

25 7-20 (7) 15-30 (19) 50-60 (52) 20-25 (22) 

125 8-22 (8) 15-35 (18) 45-55 (49) 20-30 (25) 

500 12-30 (12) 15-40 (15) 40-55 (43) 20-35 (30) 

Sources: Adapted from McConnell, 2006; Putnam and Myers, 1992; Boehm et al, 
2000; Putnam and Myers, 2003; Stutzke, 2005 
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System Manager are also suspect because of the extremely high effective 
source size for the CSCI.  The schedule allocation in Table G-17 can be used 
as a conservative schedule estimate because the CSCI will undoubtedly be 
decomposed into smaller CSCIs that will require a smaller total schedule.  
The Brain and System Manager schedules of almost six years, assuming 
worst-case growth, makes the CSCIs high-risk components that will likely 
never be delivered in their present level of decomposition.  

The HACS plan in Table G-17 assumes all tasks are started at completion of 
the requirements review; phasing is not accounted for in the table.  A 
dependency of one task on another task’s completion is not accounted for in 
this table.  In practice, each task is independently programmed on a master 
schedule for planning purposes.  

 

G.8 Allocate HACS maintenance effort 
Let’s look again at the nominal estimate for the HACS Communication 
System as illustrated in Table G-12. The system development has been 
completed and delivered to the customer.  There are still significant errors 
being uncovered in operation, but they are decreasing as the software 
matures.  Once the system stabilizes from an error point of view, we expect 
about 8 percent of the software to be modified each year of operation to 
allow for enhancements and operational refinements.  The maintenance 
functions will be performed by the software developer.  What is the annual 
effort necessary to support these requirements?  

Table G-12 contains the complexity information necessary to project the 
annual maintenance effort, assuming the development staff is available to 

Table G-17: Nominal schedule allocation for the HACS at the component (CSCI) level 

Task Name 
Size, Eff 
(Nominal 
ESLOC) 

Total 
Schedule 

(mo) 
Rqmts 
(mo) 

High-
Level 

Design 
(mo) 

Develop 
(mo) 

Sys 
Test 
(mo) 

User Info Database 5680 12.1 0.7 2.4 6.7 2.3 

Glue code for DB 5680 12.1 0.7 2.4 6.7 2.3 

DB Configuration        

System Manager  259,804 57.7 5.8 10.4 26.0 15.6 

Control Data Links 371,561 40.4 3.2 7.3 19.8 10.1 

Satellite 176,491 40.4 3.2 7.3 19.8 10.1 

Transmit 111,468 40.4 3.2 7.3 19.8 10.1 

Receive 65,023 32.6 2.6 5.9 16.0 8.2 

Radio 97,535 38.3 3.1 6.9 18.8 9.6 

Fiber Link 97,535 38.3 3.1 6.9 18.8 9.6 

Brain 222,917 62.2 6.2 11.2 28.0 16.8 

Sensors 182,297 49.2 4.9 8.9 22.1 13.3 

Solitaire 85,923 36.4 2.6 6.9 18.9 8.0 

OS (APIs) 64,210 33.6 2.4 6.4 17.5 7.4 

System Total 1,192,392 57.7 6.2 11.2 28 16.8 
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support the maintenance tasks.  That is, the environment and development 
capability will be relatively constant and productivity will not need to be 
adjusted for the maintenance calculations.   

The maintenance (enhancements, knowledge retention, and steady state 
maintenance) effort calculations are made using the Equations (4-4) through 
(4-6) in Section 4.8.  The productivity figures in Table G-18 are extracted 
from Table G-13 for the maximum software growth condition.  These 
productivity values are more conservative (lower) than the values that would 
be extrapolated from the mean growth productivity and yield a conservative 
maintenance effort.   

Applying Equation (4-6) to each of the major subsystems yields the 
anticipated annual maintenance effort for the system.  Note the System 
Manager and Brain are dominated by the Annual Change Traffic (ACT) 
effort and the remaining subsystems are driven by the number of people 
needed to retain system knowledge.  The bulk of the personnel will come 
from the operational knowledge staff.  The two elements singled out in the 
maintenance calculation will need to add staff to insure support for the 
enhancements and modifications.  The annual maintenance effort is 
projected to be approximately 968 PM per year of operation.  The time at 
which the maintenance costs balance the development effort of 11,993 PM is 
nearly 11 years.  Maintenance effort can match the development effort in as 
few as five years, depending on the program quality and change traffic. 
Therefore, this maintenance effort is relatively modest. 

The annual maintenance effort is projected to be approximately 1,019 PM 
per year of operation according to the system-level estimate in Table F-15.  
The annual maintenance effort at the nominal component level is 968.3 PM 
per year, which is less than the system-level maintenance estimate by 5 

Table G-18: Nominal component (CSCI) level cost analysis of the HACS Communication System inc. maintenance 

Task Name Ctb Cte  Size, 
Eff Cplx Develop 

(PM) 
Total 
Effort 
(PM) 

Prod. 
(ESLOC/PM) 

Maintenance 
Effort 

(PM/year) 

User Info Database     5680 13  30.7 46.6 202 4.0 

Glue code for DB 6474 3150 5680 13 26.7 38.6 202 4.0 

DB Configuration         4.0 8.0     

System Manager  6474 3150 259,804 11 2455.9 3544.2 99.2 217.3 

Control Data Links     371,561 12 2,973.2 4290.6 118.4 276.0 

Satellite 6474 3150 176,491 12 1403.6 2025.6 120.7 126.4 

Transmit 6474 3150 111,468 12 921.2 1329.4 114.2 85.5 

Receive 6474 3150 65,023 12 482.4 696.2 127.2 40.9 

Radio 6474 3150 97,535 12 784.8 1132.5 117.3 74.8 

Fiber Link 6474 3150 97,535 12 784.8 1132.5 117.3 74.8 

Brain 6474 2351 222,917 10 2795.0 4033.6 74.3 205.1 

Sensors 6474 3150 182,297 12 1622.2 2398.8 103.5 140.9 

Solitaire 6474 3150 85,923 12 674.0 972.7 120.3 65.9 

OS (APIs) 6474 3150 64,210 10 441.8 637.6 135.5 59.1 

System Total   1,192,392   10,992.8 15,924.1 101.2 968.3 
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percent.  As a rough order of magnitude test, the maintenance level matches 
the development effort at about 10 years. 
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Figure H-1: Defense Acquisition System 

Appendix H 
The Defense Acquisition System 

The warfighter relies on discipline, courage, training, and superior 
equipment to succeed.  The purpose of the acquisition process is, ultimately, 
to support the warfighter.  The Defense Acquisition System exists 
to manage the Nation’s investments in technologies, programs, 
and product support necessary to achieve the National Security 
Strategy and support the United States Armed Forces.80

The acquisition process, referred to as the Defense Acquisition 
Management Framework

  The 
acquisition system consists of the policies and procedures 
governing the operations of the entire Department of Defense 
(DoD) acquisition process.  As described in Figure H-1, the 
system is designed around a series of life-cycle phases.  As the 
process moves through these phases, decision points determine 
the next set of tasks.   

81

Cost estimates are one of the fundamental building blocks of the acquisition 
process.  The cost estimate and supporting budget are a part of the baseline 
cost and schedule against which a program's progress and success are 
measured.  The government must be able to produce and use cost estimates 
in order to evaluate whether a system is affordable and consistent with both 
the DoD components’ and their overall long-range investment and force 
structure plans.  Cost estimates also form the basis for budget requests to 
Congress.  

, is a continuum of activities that 
represent or describe acquisition programs.  It is intended to 
provide faster delivery of capabilities or improvements to the warfighter 
through a simple, flexible approach.  Acquisition management policies aim 
to reduce total ownership costs “cradle-to-grave” by addressing 
interoperability, supportability, and affordability. 

The intent of this section is to provide an overview of the Defense 
Acquisition Management Framework.  It will introduce the activities, phases, 
and efforts of the acquisition life-cycle.  Cost estimate requirements will be 
highlighted.  The section also briefly identifies the acquisition statutory and 
regulatory requirements.  Additional policy information and references are 
provided at the end of this appendix.  Some of the information contained in 
this section was obtained from the Defense Acquisition University (DAU) 
Acquisition 101 course and is used with permission from DAU. 

                                                 
80 DoD Directive 5000.1. “The Defense Acquisition System.” May 12, 2003. 
81 DoD Instruction 5000.2. “The Operation of the Defense Acquisition System.”  
May 12, 2003. 

The mission of DAU is “to 
provide practitioner training, 

career management, and services 
to enable the DoD Acquisition, 

Technology, and Logistics 
(AT&L) community to make 
smart business decisions, and 
deliver timely and affordable 

capabilities to the warfighter.” 
 

Make everything as simple as 
possible, but not simpler. 

Albert Einstein 
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H.1 Basic definitions 
Following are some basic definitions that may be helpful in understanding 
the various acquisition policies and guiding documents: 
• Acquisition – The conceptualization, initiation, design, development, 

test, contracting, production, deployment, logistics support, 
modification, and disposal of weapons and other systems, supplies, 
or services (including construction) to satisfy DoD needs, intended 
for use in or in support of military missions. 

• Systems – The organization of hardware, software, material, 
facilities, personnel, data, and services needed to perform a 
designated function with specified results, such as the gathering of 
specified data, its processing, and delivery to users. 

• Risk – A measure of the inability to achieve program objectives 
within defined cost and schedule constraints.  Risk is associated 
with all aspects of the program, e.g., threat, technology, design 
processes, or Work Breakdown Structure elements.  It has two 
components: the probability of failing to achieve a particular outcome, 
and the consequences of failing to achieve that outcome.   

H.2 Acquisition authorities 
Authority for the DoD to conduct systems acquisition comes from three 
principle sources:  the law, federal acquisition regulations, and DoD 
acquisition policy documents.  Statutory authority from Congress provides 
the legal basis.  A list of the most prominent laws, policy documents, and 
other statutory information is contained at the end of this appendix.   
 
The key reference for DoD acquisition is DoD Instruction 5000.2, Operation 
of the Defense Acquisition System.  This instruction is consistent with 
statutory requirements and implements all applicable directives and 
guidance.   It also authorizes Milestone Decision Authorities (MDAs) to 
tailor procedures to achieve cost, schedule, and performance goals.  The 
MDA is the designated individual with overall responsibility and 
accountability for a program and has authority to approve progression 
through the acquisition process. 

H.3 Acquisition categories 
Before discussing the Acquisition Management Framework, the acquisition 
program categories will be explained.  Acquisition Categories (ACATs), are 
established to determine the level of management review, decision authority, 
and other requirements for a program.  Size, complexity, and risk generally 
determine the category of the program.  A technology project or acquisition 
program is categorized based on its location in the acquisition process, dollar 
value, and MDA special interest.  There are two separate types of ACATs: 
one for weapon systems and Command, Control, Communications, 
Computers, and Intelligence (C4I) systems; and one for Automated 
Information Systems (AISs).  Also, some programs are not categorized as 
ACATs and are designated as Abbreviated Acquisition Programs (AAPs).  
 
The user who originates an Initial Capabilities Document determines if the 
need could potentially result in the initiation of a new program and makes a 
recommendation to the MDA regarding the category.  The final ACAT 
determination is made by the appropriate MDA at the Milestone B review.  

USD (AT&L) – Under 
Secretary of Defense 
Acquisition, Technology, 
and Logistics 
 
ASD (NII) – Assistant 
Secretary of Defense 
(Networks and Information 
Integration) 

“To retain respect for sausages and 
laws, one must not watch them in the 
making.” 
                         Otto Von Bismarck 
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When cost growth or other factors result in reclassifying a program to a 
higher category, the DoD Component shall notify the USD (AT&L) or the 
ASD (NII) / DoD Chief Information Officer (CIO). 
 
Designations are assigned per Department of Defense Instruction (DoDI) 
5000.2 Enclosure 2 or, for the Navy, Secretary of the Navy (SECNAV) 
Instruction 5000.2C (SECNAVINST 5000.2C) Enclosure (2).  Programs are 
categorized as ACAT I – IV or Abbreviated Acquisition.  The review 
process depends upon the projected spending level.  The intention is that 
there should be no more than two levels of review between a Program 
Manager and the MDA.  See the tables at the end of this appendix for cost 
thresholds, decision authorities, and other ACAT details.   

H.3.1 ACAT I 
An ACAT I program is labeled a Major Defense Acquisition Program 
(MDAP).  A major system is a combination of elements that function 
together providing the required mission capabilities, including hardware, 
equipment, software, or any combination thereof.  It does not include 
construction or other improvements to real property.  This designation is 
assigned if the total expenditure for Research, Development, Test and 
Evaluation (RDT&E) exceeds $365 million in fiscal year (FY) 2000 constant 
dollars or procurement is more than $2.19 billion (FY2000 constant dollars).  
Note that the MDA may consider a program as one with special interest to 
USD (AT&L) and assign it an ACAT I designation regardless of the dollar 
value. 
 
A program is generally designated as special interest because of one or more 
of the following factors:  technology complexity; Congressional interest; a 
large commitment of resources; the program is critical to achieving a 
capability or set of capabilities; or it is a joint program. 
 
USD (AT&L) designates weapon system and C4I MDAPs as ACAT ID or 
ACAT IC.  USD (AT&L) is the MDA for ACAT ID programs.  The “D” 
refers to the Defense Acquisition Board (DAB).  The DoD Component (“C” 
is for Component) head or designated Component Acquisition Executive 
(CAE) is the MDA for ACAT IC programs.  The CAE function includes the 
Service Acquisition Executives (SADs) for the military departments and 
acquisition executives in other DoD components.  For example, the Assistant 
Secretary of the Navy (Research, Development, and Acquisition) or ASN 
(RD&A) is the Department of the Navy (DON) CAE or MDA. 
 
Major Automated Information System (MAIS) programs are designated 
ACAT IA by ASD (NII).  An ACAT IA is divided into IAM and IAC 
categories.  As with ACAT IC programs the “C” in IAC refers to 
Component.  In this case, either the CAE or the Component CIO is the 
MDA.  ASN (RD&A) is the MDA for DON ACAT IAC programs unless 
this authority is specifically delegated.  The “M” (in ACAT IAM) refers to 
Major Automated Information System (MAIS). 

H.3.2 ACAT II 
Part of the definition for each of the successive categories is that the 
particular ACAT does not meet the criteria for the level above.  ACAT II 
programs do meet the criteria for a major system and have lower cost 
thresholds than ACAT I (RDT&E total expenditure of more than $140 

“Inanimate objects are 
classified scientifically into 
three major categories – 
those that don’t work, 
those that break down, and 
those that get lost.” 

    Russell Baker 

Secretary of Defense
(SECDEF)

-------------------------------------
DEPSECDEF

ASD, Networks and 
Information 
Integration

(NII)

Director, 
Operational Test & 

Evaluation
(OT&E)

Director, Program 
Analysis & 
Evaluation

(PA&E)

USD (Policy)
 

USD Comptroller
 

USD, Acquisition, 
Technology, and 

Logistics
(AT&L)  

 
Figure H-2: Acquisition Oversight 
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million in FY 2000 constant dollars, or for procurement , more than $660 
million in FY 2000 constant dollars).  ACAT II is not applicable to 
Automated Information System (AIS) programs.  The MDA is the CAE. 

H.3.3 ACAT III 
ACAT III is the next lower range or cost threshold.  This category includes 
the less-than MAIS programs.  The reasons for the designation are that it 
does not meet the criteria for ACAT II or above and it is less-than a MAIS 
program.  The decision authority is designated by the DoD CAE at the 
lowest appropriate level. 

H.3.4 ACAT IV 
ACAT IV programs are not mentioned in DoDI 5000.2, but are designated in 
SECNAVINST 5000.2C.  There are two types of ACAT IV programs, IVT 
and IVM.  “T” or Test programs require Operational Test and Evaluation 
(OT&E) while “M” or Monitor programs do not.  The Commander 
Operational Test and Evaluation Force (COMOPTEVFOR) or Director, 
Marine Corps Operational Test and Evaluation Activity (Director, 
MCOTEA) may elect to monitor ACAT IVM programs.  Program Executive 
Officers (PEOs), Systems Command (SYSCOM) Commanders, and Direct 
Reporting Program Managers (DRPMs) designate ACAT IV programs and 
may delegate MDA authority. 

H.3.5 Abbreviated Acquisition Programs 
(AAPs) 
Small DON acquisitions and modifications may be designated an AAP if 
they meet the cost threshold and other criteria and do not require OT&E.  
AAPs and IT AAPs are designed to accommodate relatively small, low-risk 
and low-cost acquisition and modification programs.  Developing policies 
and procedures for review and reporting of AAPs is the responsibility of 
PEOs, SYSCOM Commanders, and DRPMs.  APPs do not meet the criteria 
for ACAT IV or above. 

H.4 Acquisition management framework 
The DoDI 5000.2 process is commonly referred to as the Defense 
Acquisition Management Framework.  The framework is represented by 
Figure H-3. 
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Figure H-3: Defense Acquisition Management Framework 
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H.4.1 Framework elements 
The Acquisition Management Framework is separated into three activities:  
Pre-Systems Acquisition, Systems Acquisition, and Sustainment.  These 
activities are divided into five phases:  Concept Refinement, Technology 
Development, System Development and Demonstration, Production and 
Deployment, and Operations and Support.  The Phases in System 
Acquisition and Sustainment are further divided into six efforts:  System 
Integration, System Demonstration, Low-Rate Initial Production or limited 
deployment (if applicable), Full-Rate Production and Deployment, 
Sustainment, and Disposal.  An example of a detailed framework is available 
at: www.dau.mil/pubs/IDA/IDA_04.aspx 
 
The framework indicates key points in the process known as milestones.  A 
milestone is the point at which a recommendation is made and approval 
sought regarding starting or continuing an acquisition program, i.e., 
proceeding to the next phase.  The milestones established by DoDI 5000.2 
are: Milestone A approves entry into the Technology Development (TD) 
phase; Milestone B approves entry into the System Development and 
Demonstration phase; and Milestone C approves entry into the Production 
and Deployment (P&D) phase. Also of note are:  the Concept Decision (CD) 
that approves entry into the Concept Refinement phase; the Design 
Readiness Review (DRR) that ends the System Integration (SI) effort and 
continues the SDD phase into the System Demonstration (SD) effort; and the 
Full Rate Production Decision Review (FRPDR) at the end of the Low Rate 
Initial Production (LRIP) effort of the P&D phase that authorizes Full-Rate 
Production (FRP) and approves deployment of the system to the field or 
fleet.  Note that LRIP applies to MDAPs (ACAT I) only. 
 
The framework may be entered at multiple points.  The entry points, and 
subsequent acquisition path, are determined by the maturity of relevant 
technologies and the satisfaction of specific entrance criteria established for 
each phase and effort.  There is no single best method to accomplish the 
goals of the Defense Acquisition System.  There is no need for all programs 
to follow the entire process.  The flexibility and processes allow decision 
makers and Program Managers to customize the acquisition strategies to fit 
their particular program. 

H.4.2 User needs and technology 
opportunities 
The User Needs and Technology Opportunities effort is divided into two 
primary areas as the title implies, User Needs Activities and Technology 
Opportunity Activities.  User Needs Activities (as shown in Figure H-4) 
consist of determining the desired capabilities or requirements of the system.  
This activity is governed by the Initial Capabilities Document, which 
describes gaps in capability for a particular functional or mission area. It 
documents the evaluation of various materiel approaches and proposes a 
recommended approach that best satisfies the desired capability.  The 
capabilities must be centered on an integrated, collaborative, joint 
warfighting construct in accordance with the Chairman of the Joint Chiefs of 
Staff Instruction (CJCSI) 3170.01C, “Joint Capabilities Integration and 
Development System” (JCIDS). 
 
The User Needs Activities also involve preparation of the Capability 
Description Document (CDD) and the Capability Production Document 

Figure H-4: User Needs Activities 

http://www.dau.mil/pubs/IDA/IDA_04.aspx�
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(CPD).  The CDD provides operational performance parameters necessary to 
design a proposed system, builds on the Initial Capabilities Document, and 
must be approved prior to Milestone B.  The Capabilities Production 
Document (CPD) refines performance parameters from the CDD to support 
production.  It must be approved prior to Milestone C by the Joint 
Requirements Oversight Council (JROC) or Sponsor/Domain Owner 
depending upon whether the program is of joint interest or not. 
 
The other elements of the User Needs and Technology Opportunities effort 
are the Technology Development activities.  They are conducted to ensure 
the transition of innovative concepts and superior technology to the user and 
acquisition customer.  This is accomplished using Advanced Technology 
Demonstrations, Advanced Concept Technology Demonstrations, or Joint 
Warfighting Experiments. 

H.4.3 Pre-systems acquisition 
Pre-Systems Acquisition activities involve development of user needs, 
science and technology efforts, and concept refinement work specific to the 
development of a materiel solution to an identified, validated need.  As 
shown in Figure H-5, the activities are governed by the Initial Capabilities 
Document and supported by the Concept Refinement and Technology 
Development phases.  The acquisition strategy is developed during this 
activity. 
 
“Evolutionary acquisition is the preferred DoD strategy for rapid acquisition 
of mature technology for the user.”82

 

  The acquisition strategy guides 
program execution from initiation through post-production support.  It 
provides a summary description of the capability need that the acquisition of 
technology, products, and services are intended to satisfy.  The strategy 
prescribes accomplishments for each acquisition phase and identifies the 
critical events that govern program management. 

In an evolutionary approach, the user capability is divided into two or more 
increments, each with increased capabilities.  There are two basic 
approaches:  spiral development, and incremental development.  In a spiral 
development, the desired capabilities are identified but the end state is 
unknown at program initiation.  The requirements are refined through 
demonstration and risk management.   Future increments derive 
requirements from user feedback and maturing technology.  Incremental 
development has a known end state and requirements.  The requirements are 
met over time through multiple increments dependent upon available 
technology. 

H.4.3.1 Concept refinement phase 
The acquisition process begins with refinement of the selected concept to 
meet a stated capability need.  The intent of Concept Refinement is to put 
innovation into practice and foster collaboration between the warfighter, 
developers, testers, sustainers, and cost estimators to arrive at the best 
approach to solve the user’s needs.  This collaboration relies on Integrated 
Process Teams (IPTs), with representatives from the functional disciplines, 
to identify and resolve issues and to make recommendations. 

                                                 
82 DoD Instruction 5000.2. “Operation of the Defense Acquisition System.” 
May 12, 2003. 

The sponsor is the DoD 
component, domain owner or 
other organization responsible for 
all common documentation, 
periodic reporting, and funding 
actions required to support the 
capabilities development and 
acquisition process for a specific 
capability proposal. 

Figure H-5: Pre-Systems Acquisition 
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Concept Refinement begins with the Concept Decision.  The decision to 
begin this phase does not mean that a new acquisition program has been 
initiated.  Entrance into the Concept Refinement phase depends upon an 
approved Initial Capabilities Document and an approved plan for conducting 
an Analysis of Alternatives (AoA) for the selected concept.  The AoA 
provides the basis for a Technology Development Strategy (TDS), which is 
submitted prior to Milestone A for potential ACAT I and IA programs. 
 
Through studies, lab experiments, modeling, market research, and similar 
activities, the proposed solutions are examined.  Key elements to be assessed 
include technology maturity and technical risk.  The phase ends when the 
MDA approves the preferred solution resulting from the AoA and approves 
the associated TDS.  The MDA establishes a date for Milestone A and 
documents all decisions in an Acquisition Decision Memorandum (ADM).  

H.4.3.2 Milestone A 
The Milestone A decision determines the program course.  At this milestone, 
the MDA approves the TDS and sets criteria for the TD phase.  If there is no 
predetermined concept and evaluation of multiple concepts is needed, the 
MDA will approve a Concept Exploration effort.  If there is an acceptable 
concept without defined system architecture, the MDA will approve a 
Component Advanced Development effort.  Milestone A approval does not 
initiate a new acquisition program.   

H.4.3.3 Technology development phase 
The purpose of this phase is to reduce technology risk and to determine the 
appropriate set of technologies to be integrated into the complete system.  It 
is a continuous iterative process, requiring collaboration to determine the 
viability of current technical knowledge and tools while simultaneously 
refining user requirements.  Note that shipbuilding programs may be 
initiated at the beginning of Technology Development in order to start ship 
design concurrent with sub-system / component technology development. 
 
The Initial Capabilities Document and TDS guide the efforts during this 
phase.  Demonstrations of the proposed technology by the developer may be 
necessary to show the user that the solution is affordable, militarily useful, 
and based upon mature technology.  In an evolutionary acquisition, 
technology identification and development continues for future increments in 
parallel with acquisition of the current or preceding increments.  This allows 
for a faster progression into the System Development and Demonstration 
(SDD) phase. 
 
During the Technology Development phase, the Capability Development 
Document (CDD) is created.  The CDD builds upon the Initial Capabilities 
Document and provides the necessary details to design the proposed system.  
The project exits the phase when an affordable increment of useful capability 
to the military has been identified, demonstrated in the relevant environment, 
and can be developed within a short timeframe (usually less than five years).  
The Milestone B decision follows the completion of Technology 
Development. 

Figure H-6: Systems Acquisition 
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H.4.3.4 Milestone B 
The purpose of Milestone B is to authorize entry into the System 
Development and Demonstration phase.  Milestone B approval can lead to 
either System Integration or System Demonstration depending upon the 
maturity of the technology.  Programs that enter the acquisition process at 
Milestone B must have an Initial Capabilities Document that provides the 
context for determination and approval of the needed capability and a CDD 
that describes specific program requirements.   
 
At Milestone B, the MDA considers the following requirements:  Validated 
CDD, System Treat Assessment, Program Protection Plan, Technology 
Readiness Assessment, Affordability Assessment, and Test and Evaluation 
Master Plan (TEMP).  Also, the MDA approves: the Acquisition Program 
Baseline (APB), LRIP quantities (where applicable), System Development 
and Demonstration exit criteria, the DRR exit criteria, (if needed), and the 
acquisition strategy.   The Acquisition Strategy requires collaboration 
between the Program Manager, MDA, and the functional communities 
engaged in and supporting DoD acquisition.  It is used to guide activities 
during the SDD phase. 
 
If technology maturity was demonstrated but there was no integration of the 
subsystems into a complete system, then the program enters the system 
integration effort.  If the system was demonstrated by prototype articles or 
Engineering Development Models (EDMs), then the program enters the 
System Demonstration phase. 
 
Milestone B is the point at which an acquisition program is initiated.  Before 
initiating a new acquisition program, DoD Components must affirmatively 
answer the following questions: 
 Does the acquisition support core/priority mission functions that need to 

be performed?  
 Does the acquisition need to be undertaken by the DoD component 

because no alternative private sector or governmental source can better 
support the function?  

 Does the acquisition support work processes that have been simplified 
or otherwise redesigned to reduce costs, improve effectiveness, and 
make maximum use of COTS technology? 

H.4.4 Systems acquisition 
The Systems Acquisition activity requires a great deal of planning and 
preparation and comprehensive knowledge of the program and the defense 
acquisition environment.  The activity is divided into two phases: the System 
Development and Demonstration and Production and Deployment. 

H.4.4.1 System development and demonstration 
The objective of the System Development and Demonstration phase is to 
demonstrate an affordable, supportable, interoperable, and producible system 
in its intended environment.  This is accomplished using EDMs or 
commercial items that meet validated requirements and ensure that necessary 
industrial capabilities to produce the systems are available.  The phase can 
be entered directly from the TD phase as determined by the MDA.  Entrance 
depends upon technology maturity, approved requirements, and funding.  
Completion of this phase is dependent upon a decision by the MDA to 
commit to the program at Milestone C or to end the effort. 

The Office of the Secretary of Defense 
(OSD), the Military Departments, the 
Chairman of the Joint Chiefs of Staff, the 
Combatant Commands, the Office of the 
Inspector General of the Department of 
Defense, the Defense Agencies, the DoD 
Field Activities, and all organizational 
entities within the Department of Defense 
are collectively referred to as "the DoD 
Components". 

 

 
 Lead ship in a class normally 

authorized at Milestone B 
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Transition into SDD requires full funding.  The SDD has two major efforts:  
System Integration and System Demonstration.  System Integration requires 
a technical solution for the system.  At this point, the subsystems are 
integrated, the detailed design is completed, and efforts are made to reduce 
system-level risks.  The effort is guided by an approved CDD which includes 
a minimum set of Key Performance Parameters (KPPs).  The program exits 
System Integration when the system has been demonstrated using prototype 
articles or EDMs and upon completion of a Design Readiness Review. 
 
The Design Readiness Review form and content is determined by the MDA 
and provides an opportunity to assess:  the design maturity, corrective 
actions for deficiencies, scope of testing, safety and other risks, key system 
characteristics, reliability, and manufacturing processes.  A successful 
review ends the System Integration effort and moves the program into the 
System Demonstration effort. 
 
System Demonstration is intended to show that the system works.  The 
ability of the system (prototype) to operate must be shown in its intended 
environment.  It must demonstrate that it provides the required capabilities 
and that it meets or exceeds the exit criteria established in the TDS. 
 
The completion of the SDD phase is dependent on a decision by the MDA to 
either commit to the program at Milestone C or to end this effort. 

H.4.4.2 Milestone C 
The purpose of Milestone C is to authorize entry into: LRIP, production or 
procurement (for systems that do not require LRIP), authorizes operational 
testing, or limited deployment for MAIS or software-intensive systems with 
no production components.  A partial list of Milestone C criteria includes: 
acceptable performance, mature software, satisfactory results from testing 
and the operational assessment, and no significant manufacturing risks.  
Other conditions include affordability, interoperability, and supportability.  
See DoDI 5000.2 for details. 
 
Prior to the Milestone C decision, the MDA considers: cost and manpower 
estimates (for MDAPs), the system threat assessment, and environmental 
issues.  A favorable Milestone C decision commits DoD to production of the 
system.  At Milestone C, the MDA approves:  the updated acquisition 
strategy, updated development APB, exit criteria for LRIP or limited 
deployment, and the ADM.   
 
For MDAPs and major systems, Milestone C authorizes entry into LRIP; a 
subsequent review and decision authorizes full rate production.  LRIP is not 
applicable for MAIS programs or software-intensive systems without 
developmental hardware.  However, a limited deployment phase may be 
applicable to these systems. 

H.4.4.3 Production and deployment 
The purpose of the P&D phase is to achieve an operational capability that 
satisfies mission needs.  The production requirement does not apply to MAIS 
programs, but software maturity must be proven prior to operational 
deployment.  The P&D phase consists of the LRIP effort, the FRPDR, and 
the Full-Rate Production and Deployment effort. 
 

• MDAP – Major Defense 
Acquisition Program 

• APB – Acquisition 
Program Baseline 

• ADM – Acquisition 
Decision Memorandum 
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The LRIP effort is intended to complete development of a manufacturing 
capability able to efficiently produce the necessary number of systems for 
Initial Operational Test and Evaluation (IOT&E).  The production base must 
also allow for an effective increase in the production rate when operational 
testing is completed.  The test director shall determine the number of 
production systems (articles) required for test and evaluation. 
 
The CPD guides the LRIP effort.  As indicated in the Milestone B 
requirements, the LRIP quantities are determined by the MDA.  Any 
increase must likewise be approved during this effort.  Deficiencies found 
during test (prior to Milestone C) must be resolved and verified before 
proceeding beyond LRIP.  LRIP for ships and satellites is production of 
items at the minimum quantity and rate that is feasible and that preserves the 
mobilization production base for the system. 
 
The decision to continue to full-rate production, or limited deployment for 
MAIS/software-intensive systems, requires completion of IOT&E and 
approval of the MDA.  Other reports may be necessary per DoDI 5000.2.  
Before the FRPDR, the MDA considers: the manufacturing process, 
reliability, critical processes, and other data.  An Independent Cost Estimate 
(ICE) for MDAPs, or a Component Cost Analysis for MAISs, is required at 
the FRP Decision Review. 
 
Full-Rate Production and Deployment begins after a successful FRPDR by 
the MDA.  This effort delivers the fully funded quantity of systems, 
supporting materiel, and services for the program or increment to the users.  
The system achieves Initial Operational Capability (IOC) during this effort. 

H.4.5 Sustainment 
The Sustainment activity has one phase, Operations and Support (O&S), 
consisting of two major efforts: Sustainment and Disposal.  The objective of 
this activity is to provide cost-effective support for the operational system 
over its total life-cycle.  Operations and Support begins when the first 
systems are deployed.  Since deployment begins in the latter portions of the 
P&D phase, these two activities overlap.  Later, when a system has reached 
the end of its useful life, it needs to be disposed of appropriately. 

H.4.5.1 Sustainment effort 
Thought towards maintenance and sustainability begins at system design.  
Wise planning during systems engineering, building for reliability and ease 
of maintenance all lead to effective sustainment.  Sustainment includes many 
functions such as: supply, transportation, configuration management, 
training, personnel, safety, and security. 
 
Support and life-cycle affordability plans in the acquisition strategy are 
implemented by the Program Managers.  They address:  the support and 
fielding requirements to meet readiness and performance objectives, lower 
total ownership costs, risk reduction, and avoidance of harm to health and 
environment.  Sustainment strategies need to evolve throughout the life-
cycle to take advantage of cost saving methods and improved technology.  
This is especially important for later increments or upgrades and 
modifications to the system.  Decision makers must look at total ownership 
costs within the context of overall DoD priorities. 

The cost of maintaining systems 
in many organizations has been 
observed to range from 40% to 
70% of resources allocated to the 
entire software life-cycle. 
 
Penny Grubb and Armstrong 
Takang, from Software 
Maintenance: Concepts and 
Practice  

 

Figure H-7: Production &Deployment 

Figure H-8: Operations & Support 
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H.4.5.2 Disposal effort 
At the end of the system’s useful life, it must be demilitarized and disposed 
of in accordance with all the requirements and policies relating to safety, 
security, and the environment.  These plans are also addressed by the 
Program Managers in the acquisition strategy.  Sustainment continues until 
all elements of the system are removed from the inventory. 

H.5 Cost analysis 
The Defense Acquisition System documents refer to life-cycle cost, total 
ownership cost, and various cost estimates and analyses.  For a defense 
acquisition program, life-cycle cost consists of research and development, 
investment (i.e., LRIP and P&D phases), O&S, and disposal costs over the 
entire life of the system.  The life-cycle cost includes the direct acquisition 
costs and any indirect costs that can be logically attributed to the program.  
Total ownership cost includes the elements of life-cycle cost along with the 
infrastructure or business process costs not necessarily attributable to the 
program.  
 
Cost estimates and analyses are directed by law and governed by DoD and 
service directives and instructions.  Title 10 of the United States Code, 
Subtitle A, Part IV, Chapter 144, Section 2434, states:  
 

The Secretary of Defense may not approve the system development 
and demonstration, or the production and deployment, of a major 
defense acquisition program unless an independent estimate of the 
full life-cycle cost of the program and a manpower estimate for the 
program have been considered by the Secretary.  

 
In DoD Directive 5000.4, Cost Analysis Improvement 
Group (CAIG), the specific responsibility for fulfilling 
the requirement for an independent cost estimate is 
assigned to the Office of the Secretary of Defense 
(OSD) Cost Analysis Improvement Group for ACAT 
ID programs, pre-MDAP projects approaching formal 
program initiation as a likely ACAT ID program, and 
ACAT IC programs when requested by the USD 
(AT&L).  
 
DoDI 5000.2 specifies that the CAIG independent cost 
estimate will be provided in support of major 
milestone decision points (Milestone B, C, or the 
FRPDR).  In addition, the MDA may request, at any 
time, that the CAIG prepare other ICEs or conduct 
other ad-hoc cost assessments for programs subject to 
DAB review or oversight.  The OSD CAIG reviews 
cost estimates prepared by the program office and/or 
the DoD Component cost agency.  Overall, the CAIG serves as the principal 
advisory body to the MDA on all matters concerning an acquisition 
program’s life-cycle cost. 
 
DoDI 5000.2 Enclosure 3 lists cost information required for the milestones 
and reviews.  For example, an ICE is required for MDAPs (n/a for AISs) at 
Milestone B, Milestone C, and the FRPDR.  The instruction also requires 
that a program office estimate (POE) and a DoD Component cost analysis 

Figure H-9: Life Cycle Cost Composition 
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estimate be prepared in support of acquisition milestone reviews.  Of note, 
only a cost assessment is required at program initiation for ships.  The table 
in the enclosure also points out the Affordability Assessment, Economic 
Analysis, Component Cost Analysis, and what type of programs they are 
required for and at what points in the program. 
 
As stated, the OSD CAIG prepares independent life-cycle cost estimates for 
major defense acquisition programs at major milestone reviews.  It also 
concurrently reviews cost estimates prepared by the program office and/or 
the DoD Component cost agency.  The CAIG has other responsibilities, as 
described in DoDD 5000.4.  One of the major responsibilities is to establish 
guidance on the preparation of life-cycle cost estimates subject to CAIG 
review.  This guidance includes standard definitions of cost terms in the 
management of DoD acquisition programs. 

H.5.1 Cost estimating 
Cost estimating and analysis are clearly essential activities in determining 
life-cycle and total ownership costs.  The estimates must include all costs 
associated with the system or the total “Life Cycle Cost Composition” 
(Figure H-9).  It is, therefore, important to submit well-documented cost 
estimates that are ready for review.  In general, the documentation should be 
sufficiently complete and well organized so that a cost professional can 
replicate the estimate, given the documentation. 
 
Cost estimates are based on the program definition.  For ACAT I and IA 
programs, the Cost Analysis Requirements Description (CARD) is used to 
formally describe the acquisition program (and the system itself) for 
purposes of preparing the program office cost estimate, Component cost 
position (if applicable), the ICE, and whenever an Economic Analysis is 
required.  The Cost Analysis Guidance and Procedures (DoD 5000.4-M) 
says the CARD should be considered a “living” document that is updated to 
reflect changes.   
 
As an aside, requirements uncertainty, completeness, and estimating 
techniques are discussed elsewhere in this guidebook.  Suffice it to say, 
“Stable requirements are the holy grail of software development.”83

 

  The 
level of detail presented in the CARD will vary depending upon the maturity 
of the program and will affect the fidelity of the cost estimate.  During the 
development process, customers and developers gain a better understanding 
of the system and their needs, which leads to requirements change.  
Consequently, techniques used to develop the cost estimates need to take 
into account the stage of the acquisition cycle that the program is in when the 
estimate is made.  During the early phases of the program, it is expected that 
the use of parametric (statistical) costing techniques will be used for the 
development of the cost estimates. 

Cost estimates must capture all costs of the program, regardless of fund 
source or management control; they are not to be arbitrarily limited to certain 
budget accounts or to categories controlled by certain lines of authority. 
 
When programs are less mature (in Concept Refinement, Technology 
Development, or System Development & Demonstration), program cost 

                                                 
83 McConnell, Steve. Code Complete, Second Edition. Redmond, WA: Microsoft 
Press, 2004. 

Requirements are like water.  
They’re easier to build on 
when they’re frozen. 

                  Anonymous 

Arthur C. Clarke’s 3 Laws: 

1. When a distinguished but elderly 
scientist states that something is 
possible, he is certainly right.  When 
he states that something is impossible, 
he is very probably wrong. 
2. The only way of discovering the 
limits of the possible is to venture a 
little way past them into the 
impossible. 
3. Any sufficiently advanced 
technology is indistinguishable from 
magic. 

Revised Edition of 
Profiles of the Future (1973) 
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estimates that are supporting the acquisition system normally are focused on 
life-cycle cost or elements of life-cycle cost.  Examples include:  
affordability assessments, analyses of alternatives, cost-performance 
tradeoffs, and program cost goals.  More refined life-cycle cost estimates are 
often used within the program office to support internal decision-making 
such as design change evaluations and assessments of production, reliability, 
maintenance, and support.  As programs mature (transition from Production 
and Deployment to Operations and Support), cost estimates will likely be 
expanded in scope to encompass total ownership costs. 
 
For cost elements which are determined to be low-risk and low-cost based on 
an independent analysis of the program assumptions, the CAIG Chair may 
authorize the use of the Sufficiency Review method for assessing the 
adequacy of these cost elements.  The review includes an evaluation of the 
techniques and data used to develop the POE and, if available, the use of 
data from alternative sources to verify the POE. The results of the review are 
documented and provided to the CAIG. 

H.5.2 Estimate types 
DoD, service component, and other acquisition guidance provides more 
detailed information on the requirements for the various estimates that are 
part of the Defense Acquisition System process.  For the purposes of this 
guidebook, a brief summary of the types mentioned in DoDI 5000.2, DoD 
Directive 5000.4, and DoD 5000.4-M are included here.  However, these 
estimate type definitions are common to most other documentation. 

H.5.2.1 Life-cycle cost estimate  
DoDD 5000.1 directs estimation of ownership costs to begin as early as 
possible in the acquisition process.  The Life-Cycle Cost Estimate (LCCE) 
must be provided to the MDA before approval for an MDAP to proceed with 
the Systems Acquisition activity.   Life-Cycle Cost includes all program 
elements; all affected appropriations; and encompasses the costs, contractor 
and in house effort, as well as existing assets to be used, for all cost 
categories.  It is the total cost to the government for a program over its full 
life, and includes the cost of research and development, investment in 
mission and support equipment (hardware and software), initial inventories, 
training, data, facilities, etc., and the operating, support, and, where 
applicable, demilitarization, detoxification, or long term waste storage.  The 
Independent Cost Estimate and the Program Office Estimate described 
below are both, essentially, LCCEs.  The difference between them is the 
organization who prepares it. 

H.5.2.2 Total Ownership Cost  
As explained earlier, TOC consists of the life-cycle cost, as well as other 
infrastructure or costs not necessarily attributable to the program.  
Infrastructure is interpreted in the broadest sense to include all military and 
defense agency activities which sustain the military forces assigned to the 
combatant and component commanders.  The major categories of 
infrastructure are:  equipment support (acquisition and central logistics 
activities), military personnel support (non-unit central training, personnel 
administration and benefits, and medical care), and military base support 
(installations and communications/information infrastructure).  Other costs 
include many things such as environmental and safety compliance and 
contract oversight. 
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The CDD and CPD include a program affordability determination identified 
as life-cycle cost or, if available, total ownership cost.  The APB should 
contain cost parameters (objectives and thresholds) for major elements of 
program life-cycle costs (or TOCs, if available). 
 
In general, traditional life-cycle cost estimates are in most cases adequate in 
scope to support decisions involving system design characteristics (such as 
system weight, material mix, or reliability and maintainability). However, in 
special cases, depending on the issue at hand, the broader perspective of total 
ownership cost may be more appropriate than the life-cycle cost perspective, 
which may be too narrow to deal with the particular context. 

H.5.2.3 Analysis of Alternatives 
The AoA is the evaluation of the operational effectiveness, operational 
suitability, and estimated cost of alternative systems to meet a mission 
capability.  The AoA is developed during the Concept Refinement phase and 
is required for Milestone A.  For potential and designated ACAT I and IA 
programs, the Director, Program Analysis and Evaluation will direct 
development of the AoA by preparing initial guidance and reviewing the 
analysis plan and final analysis products. 

H.5.2.4 Independent Cost Estimate  
An ICE is required for major milestone decision points.  Estimates, 
independent of the developer and the user, ensure an impartial cost 
evaluation.  Acquisition officials typically consider these assessments when 
making decisions.  
 
An ICE is prepared and provided to the MDA before an MDAP proceeds 
with System Acquisition activities.  The OSD CAIG usually prepares the 
ICE.  However, the component cost agency, for example the Naval Center 
for Cost Analysis (NCCA), is responsible for the ICE when it is not prepared 
by the CAIG.84

H.5.2.5 Program Office Estimate (POE) 

  Similarly, in the case of ACAT II programs, an ICE is 
prepared by the SYSCOM/PEO Cost Estimating Office. 

The program office prepares many estimates, as can be derived from the 
previous information, such as the AoA and affordability assessment.  They 
prepare an LCCE for all ACAT I program initiation decisions and at all 
subsequent program decision points.  This is known as the Program Office 
Estimate (POE).  The CAIG may incorporate in its estimate, with or without 
adjustment, specific portions of the POE or the DoD Component Cost 
Analysis estimate, if it has independently established that the portions 
included are valid. 

H.5.2.6 Component Cost Analysis 
Another type of independent estimate is called the Component Cost 
Analysis.  It is mandatory for MAIS programs and as requested by the CAE 
for MDAP programs.  The need for a Component Cost Analysis at Milestone 
A is evaluated for each program in tailoring the oversight process.  The 
Component Cost Analysis is normally prepared by the Service Component 
                                                 
84 SECNAVINST 5000.2C. Implementation and Operation of the Defense 
Acquisition System and the Joint Capabilities Integration and Development System. 
Nov. 19, 2004. 

Gregory Benford’s Corollary to 
Clarke’s Third Law:  Any 
technology distinguishable from 
magic is insufficiently advanced. 
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Cost Estimating Agency or an entity not associated with the program office 
or its immediate chain of command.  Note that recent references (DoD 
Instruction [DoDI] 5000.2 and the Defense Acquisition Guidebook) define 
CCA as the Clinger-Cohen Act and spell out Component Cost Analysis. 

H.5.2.7 Economic Analysis  
The purpose of the Economic Analysis is to determine the best acquisition 
alternative.  This is done by assessing the net costs and benefits of the 
proposed program relative to the status quo.  An Economic Analysis is only 
required for MAIS programs.  Anytime one is required, the DoD Component 
responsible for the program may also be required to provide a DoD 
Component Cost Analysis.  Normally, the Economic Analysis is prepared by 
the AIS program office.  The CARD is used to define and describe the AIS 
program for purposes of preparing both the Economic Analysis and the DoD 
Component Cost Analysis. 

H.6 Acquisition category information 
The following tables were copied from the NAVAIR Training Systems 
Division website.   The website table data was last updated 10 January 2005.     

Table H-1: DoD Instruction 5000.2 ACATs 

Description and Decision Authority for ACAT I - III Programs 

Acquisition 
Category Reason for ACAT Designation Decision Authority 

ACAT I 

 MDAP (10 USC 2430, reference (n))  
• Dollar value: estimated by the USD(AT&L) to require an 

eventual total expenditure for RDT&E of more than $365 million 
in fiscal year (FY) 2000 constant dollars or, for procurement, of 
more than $2.190 billion in FY 2000 constant dollars  

• MDA designation  
 MDA designation as special interest  

ACAT ID: USD(AT&L) ACAT IC: 
Head of the DoD Component or, if 
delegated, the DoD Component 
Acquisition Executive (CAE) 

ACAT IA 

 MAIS: Dollar value of AIS estimated by the DoD Component Head to 
require program costs (all appropriations) in any single year in excess 
of $32 million in fiscal year (FY) 2000 constant dollars, total program 
costs in excess of $126 million in FY 2000 constant dollars, or total 
life-cycle costs in excess of $378 million in FY 2000 constant dollars  

 MDA designation as special interest  

ACAT IAM: ASD(C3I)/DoD CIO 
ACAT IAC: CAE, as delegated by 
the DoD CIO 

ACAT II 

 Does not meet criteria for ACAT I  
 Major system  

• Dollar value: estimated by the DoD Component Head to require 
an eventual total expenditure for RDT&E of more than $140 
million in FY 2000 constant dollars, or for procurement of more 
than $660 million in FY 2000 constant dollars (10 USC 2302d, 
reference (o))  

• MDA designation4 (10 USC 2302(5), reference (p))  
 MDA designation as special interest  

DoD CAE or the individual 
designated by the CAE 

ACAT III  Does not meet criteria for ACAT II or above  
 Less-than a MAIS program  

Designated by the DoD CAE at the 
lowest level appropriate 

Notes: 
1. In some cases, an ACAT IA program, as defined above, also meets the definition of an MDAP. The USD(AT&L) and the 
ASD(C3I)/DoD CIO shall decide who will be the MDA for such programs. Regardless of who is the MDA, the statutory 
requirements that apply to MDAPs shall apply to such programs. 
2. An AIS program is an acquisition program that acquires IT, except IT that involves equipment that is an integral part of a weapon 
or weapons system, or is an acquisition of services program. 
3. The ASD(C3I)/DoD CIO shall designate programs as ACAT IAM or ACAT IAC. MAIS programs shall not be designated as 
ACAT II. 
4. As delegated by the Secretary of Defense or Secretary of the Military Department. 
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Table H-2: SECNAV Inst 5000.2C ACATs 

Description and Decision Authority for ACAT I-IV and AAP Programs 

Acquisition 
Category Criteria for ACAT or AAP Designation Decision Authority 

ACAT I 

 Major Defense Acquisition Programs (MDAPs) (10 USC 2430)  
• RDT&E total expenditure > $365 million in FY 2000 

constant dollars, or  
• Procurement total expenditure > $2.190 billion in FY 2000 

constant dollars, or  
 USD(AT&L) designation as special interest  

ACAT ID: USD(AT&L)ACAT IC: 
SECNAV, or if delegated, 
ASN(RD&A) as the CAE 

ACAT IA 

 Major Automated Information Systems (MAISs)  
• Program costs/year (all appropriations) > $32 million in FY 

2000 constant dollars, or  
• Total program costs > $126 million in FY 2000 const. 

dollars, or  
• Total life-cycle costs > $378 million in FY 2000 constant 

dollars  
 ASD(NII) designation as special interest  

ACAT IAM: ASD(NII)/DoD 
CIOACAT IAC: ASN(RD&A), as 
delegated by the DoD CIO  

ACAT II 

 Does not meet the criteria for ACAT I  
 Major Systems (10 USC 2302(5))  

• RDT&E total expenditure > $140 million in FY 2000 
constant dollars, or  

• Procurement total expenditure > $660 million in FY 2000 
constant dollars, or  

 ASN(RD&A) designation as special interest  
 Not applicable to IT system programs  

ASN(RD&A), or the individual 
designated by ASN(RD&A) 

ACAT III 

 Does not meet the criteria for ACAT II or above  
 Weapon system programs:  

• RDT&E total expenditure = $140 million in FY 2000 
constant dollars, or  

• Procurement total expenditure = $660 million in FY 2000 
constant dollars, and  

• Affects mission characteristics of ships or aircraft or 
combat capability  

 IT system programs:  
• Program costs/year = $15 million = $32 million in FY 2000 

constant dollars, or  
• Total program costs = $30 million = $126 million in FY 

2000 constant dollars, or  
• Total life-cycle costs = $378 million in FY 2000 constant 

dollars  

Cognizant PEO, SYSCOM 
Commander, DRPM, or designated 
flag officer or senior executive 
service (SES) official. 
 
ASN(RD&A), or designee, for 
programs not assigned to a PEO, 
SYSCOM, or DRPM. 

ACAT IVT 

 Does not meet the criteria for ACAT III or above  
 Requires operational test and evaluation  
 Weapon system programs:  

• RDT&E total expenditure = $140 million in FY 2000 
constant dollars, or  

• Procurement total expenditure = $660 million in FY 2000 
constant dollars  

 IT system programs:  
• Program costs/year < $15 million, or  
• Total program costs < $30 million, or  
• Total life-cycle costs = $378 million in FY 2000 constant 

dollars  

Cognizant PEO, SYSCOM 
Commander, DRPM, or designated 
flag officer, SES official, or 
Program Manager. 
 
ASN(RD&A), or designee, for 
programs not assigned to a PEO, 
SYSCOM, or DRPM 

ACAT IVM 

 Does not meet the criteria for ACAT III or above  
 Does not require operational test and evaluation as concurred 

with by the Office of Technology Assessment (OTA)  
 Weapon system programs:  

• RDT&E total expenditure = $10 million = $140 million in 
FY 2000 constant dollars, or  

• Procurement expenditure = $25 million/year = $50 million 
total = $660 million total in FY 2000 constant dollars  

 Not applicable to IT system programs  

Cognizant PEO, SYSCOM 
Commander, DRPM, or designated 
flag officer, SES official, or 
Program Manager. 
 
ASN(RD&A), or designee, for 
programs not assigned to a PEO, 
SYSCOM, or DRPM 

Abbreviated  Does not meet the criteria for ACAT IV or above  Cognizant PEO, SYSCOM 
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Description and Decision Authority for ACAT I-IV and AAP Programs 

Acquisition 
Category Criteria for ACAT or AAP Designation Decision Authority 

Acquisition 
Program 

 Does not require operational test and evaluation as concurred 
with in writing by OTA  

 Weapon system programs:  
• Development total expenditure < $10 million, and  
• Production or services expenditure < $25 million/year, < 

$50 million total  
 IT system programs:  

• Program costs/year < $15 million, and  
• Total program costs < $30 million  

Commander, DRPM, or designated 
flag officer, SES official, or 
Program Manager. 
 
ASN(RD&A), or designee, for 
programs not assigned to a PEO, 
SYSCOM, or DRPM. 

 

H.7 Acquisition references 
The following information provides additional details and resources on 
acquisition related topics.    

H7.1 Online resources 
Defense Acquisition Guidebook (DAG):  The Defense Acquisition 
Guidebook is designed to complement the policy documents by providing 
the acquisition workforce with discretionary best practices that should be 
tailored to the needs of each program. 
Acquisition professionals should use the Guidebook as a reference source 
supporting their management responsibilities.  Link:  
http://akss.dau.mil/dag/DoD5000.asp?view=document&doc=3 
 
Introduction to Defense Acquisition Management (ACQ 101):  This 
course provides a broad overview of the DoD systems acquisition process, 
covering all phases of acquisition. It introduces the JCIDS and resource 
allocation processes, the DoD 5000 Series documents governing the defense 
acquisition process, and current issues in systems acquisition management.  
Link (to this and other DAU course descriptions):  
http://www.dau.mil/schedules/schedule.asp 
 
Defense Acquisition Policy Center:  References and links to Acquisition 
Policies (DoD, Joint Chiefs, and Services), Guidance, and Support 
(Tutorials, briefings, etc.).  Link:  http://akss.dau.mil/dapc/index.html 
 
Acquisition Community Connection (ACC):  Other resources for 
acquisition information, knowledge and information sharing forums to 
connect with others in your field, collaborative and private workspaces.  
Link:  https://acc.dau.mil/simplify/ev_en.php 
 
Acquisition, Technology, and Logistics Knowledge Sharing System 
(AKSS):  Contains links to policies and tools and other suggested reading 
resources.  Includes links to new policy documents and the latest news for 
DoD and the services.  Link:  http://akss.dau.mil/jsp/default.jsp 
 

H7.2 Statutory information 
Statutory authority from Congress provides the legal basis for systems 
acquisition.  Some of the most prominent laws are: 

• Armed Services Procurement Act (1947), as amended 

http://akss.dau.mil/dag/DoD5000.asp?view=document&doc=3�
http://www.dau.mil/schedules/schedule.asp�
http://akss.dau.mil/dapc/index.html�
https://acc.dau.mil/simplify/ev_en.php�
http://akss.dau.mil/jsp/default.jsp�
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• Small Business Act (1963), as amended 
• Office of Federal Procurement Policy Act (1983), as amended 
• Competition in Contracting Act (1984) 
• DoD Procurement Reform Act (1985) 
• DoD Reorganization Act of 1986 (Goldwater-Nichols) 
• Federal Acquisition Streamlining Act (FASA) of 1994 
• Clinger-Cohen Act of 1996  

 
Armed Services Procurement Act - The modern era of congressional 
involvement in acquisition began with the Armed Services Procurement Act 
of 1947. The purpose of this law was to standardize contracting methods 
used by all of the services. As a result, the first joint DoD regulation was 
created—the Armed Services Procurement Regulation (ASPR). This Act 
continued the sealed bid as the preferred method of procurement, placed 
procurement rules in one location and gave us the ASPR, which was the 
beginnings of today's rulebook, the Federal Acquisition Regulation (FAR).   
 
Office of Federal Procurement Policy Act of 1983 - Established a central 
office to define overall government contracting and acquisition policy and to 
oversee the system, among other things. 
 
Competition in Contracting Act of 1984 - Revised government policy to 
mandate competition and created an advocate for competition, the 
Competition Advocate General.  While competition has always been the 
hallmark of the system, it was not until the passage of the Competition in 
Contracting Act (CICA) of 1984, which mandated full and open competition, 
that over 50 percent of the dollars spent were actually competed. CICA 
instituted a very structured process for sole source authorization. It requires 
approval by the local competition advocate for lower dollar acquisitions. 
 
DoD Procurement Reform Act 1985 - Defense Procurement Reform Act 
established a uniform policy for technical data and created a method for 
resolving disputes. 
 
DoD Reorganization act of 1986 (commonly referred to as Goldwater-
Nichols Act) - Among other items, revised the Joint Chiefs of Staff role in 
acquisition and requirements determination. 
 
Federal Acquisition Streamlining Act - Revolutionary in its impact on the 
federal acquisition process. It repealed or substantially modified more than 
225 statutes and pushed the contracting process into the 21st century. Among 
other things, it simplified the federal procurement process, reduced 
paperwork burdens, and transformed the simplified acquisition process to 
electronic commerce.  Military specifications and standards are no longer the 
preferred method of doing business. Congress, at the DoD’s urging, passed 
this legislation to remove some of the barriers. 
 
Cohen-Clinger Act of 1996 - It provides that the government information 
technology shop be operated exactly as an efficient and profitable business 
would be operated. Acquisition, planning and management of technology 
must be treated as a "capital investment." While the law is complex, all 
consumers of hardware and software in the DoD should be aware of the 
CIO’s leadership in implementing this statute. CCA emphasizes an 
integrated framework of technology aimed at efficiently performing the 
business of the DoD. Just as few businesses can turn a profit by allowing 
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their employees to purchase anything they want to do any project they want, 
the DoD also cannot operate efficiently with hardware and software systems 
purchased on an “impulse purchase” basis and installed without an overall 
plan. All facets of capital planning are taken into consideration just as they 
would be in private industry:  

• cost/benefit ratio  
• expected life of the technology  
• flexibility and possibilities for multiple uses  

The act included changes to competition practices, commercial item 
acquisition, and fundamental changes in how information technology 
equipment is purchased.  Note: before FASA could be fully implemented, 
this Act became law and corrected some deficiencies in the earlier legislation 
and made more changes.   

Defense Procurement Improvement Act of 1986 - Provided policy on the 
costs contractors submitted to the government for payment and on conflicts 
of interest involving former DoD officials. 
 
Defense Acquisition Improvement Act of 1986 - Among other things, 
created the Under Secretary of Defense (Acquisition and Technology). 
 
Ethics Reform Act of 1989 - As a result of the “ill-wind” procurement 
scandal, Congress mandated more stringent ethics laws. 
 
Defense Acquisition Workforce Improvement Act of 1990 - Mandated 
education, training and professional requirements for the defense acquisition 
corp. 
 
Federal Acquisition Reform Act of 1996 - Revised procurement laws 
facilitate more efficient competition; included improving debriefings, 
limiting need for cost/pricing data and emphasizing price versus cost 
negotiations, among other items. 
 
Acquisition policies, procedures, and operations within DoD are governed 
by two documents.  The first regulation is DoDD 5000.1, The Defense 
Acquisition System.  The second is DoDI 5000.2, Operation of the Defense 
Acquisition System. 
 
DoD Directive 5000.1, The Defense Acquisition System – Identifies the key 
officials and panels for managing the system and provides broad  policies 
and principles that guide all defense acquisition programs. 
 
DoD Instruction 5000.2, Operation of the Defense Acquisition System – 
Establishes a simplified and flexible management framework for translating 
joint capability needs and technological opportunities into stable, affordable, 
and well-managed acquisition programs. It applies to all defense technology 
projects and acquisition programs, although some requirements where stated 
apply only to MDAPs and MAISs.  
It implements the policies and principles set forth in the directive.   
 
There are other laws, regulations, and guidance that apply to acquisition, 
such as the FAR (which has a DoD supplement) and laws relating to 
Environment, Safety, and Occupational Health (ESOH).  CJCSI 3170.01E 
deals with the JCIDS, which is a process to determine the capabilities needed 
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by the warfighter, and, ultimately, the requirements of the systems we 
acquire. 
 
Defense Acquisition Guidebook - provides non-mandatory guidance on 
best practices, lessons learned, and expectations.  
 
Federal Acquisition Regulation - the primary regulation for use by all 
Federal agencies for the acquisition of supplies and services with 
appropriated funds. The FAR guides and directs DOD Program Managers in 
many ways including acquisition planning, competition requirements, 
contract award procedures, and warranties.  DOD has supplemented the FAR 
to describe its own procedures with the Defense Federal Acquisition 
Regulation Supplement (DFARS).  
 
Environment, Safety, and Occupational Health Requirements (ESOH) - 
The Program Manager must ensure the system can be produced (Service 
specific issue), tested, fielded, operated, trained with, maintained, and 
disposed of in compliance with environment, safety, and occupational health 
(ESOH) laws, regulations and policy (collectively termed ESOH 
requirements). The goal of ESOH law is to protect human health and 
safeguard the environment. The DoD goal is to safeguard the environment, 
reduce accidents, and protect human health. The most effective means to 
meet this DoD goal is by managing risks.  
PMs should also be aware how different aspects of laws, regulations and 
policies affect their ability to implement this goal over the system’s life-
cycle. Acquisition program offices need to address ESOH requirements 
because they can impact the cost, schedule, and performance of the system. 
As part of risk reduction, the Program Manager is responsible for identifying 
the applicable ESOH requirements and ensuring that they consult with the 
user to make informed decisions about whether, or to what degree, the 
system conforms to the applicable ESOH requirements.  
 
Effective ESOH Risk Management Practices - DoD acquisition policy 
requires the Program Manager to document the program process, the 
schedule for completing National Environmental Policy Act (NEPA) 
documentation, and the status of ESOH risk management in a Programmatic 
ESOH Evaluation (PESHE). The PESHE is not intended to supersede or 
replace other ESOH plans, analyses, and reports (e.g., System Safety 
Management Plans/Assessments, Hazardous Materials Management Plans, 
NEPA documents, Health Hazard Assessments [HHA], etc.); it is a 
management and reporting tool for the Program Manager.  
 
ESOH Requirements - ESOH requirements are driven from the top by 
federal (including Executive Orders), state, and local ESOH laws and 
implementing regulations. DoD and Component policies implement the law, 
and frequently include additional requirements. ESOH requirements:  
• Establish the methods and mechanisms of a process for compliance.  
• May impose civil injunctions resulting in program delays if the 

compliance process is not properly planned and executed.  
• Mandate legal compliance requirements and processes.  
• Assign compliance responsibility, primarily to the facility and 

installation managers and maintainers.  
• For acquisition programs the Program Manager is responsible for 

considering ESOH requirements and their effects throughout the system 
life-cycle when making design decisions.  
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• Impose criminal and/or civil penalties for lack of compliance, which may 
or may not be applicable to federal agencies and individuals.  

System design and functionality, materials used, and operational parameters 
drive the extent of ESOH compliance requirements. ESOH impacts must be 
considered as an integral part of any acquisition systems engineering effort. 
Incorporating safety and human systems engineering into design enhances 
performance and lowers the risk of mishaps.  
 
National Environmental Policy Act (NEPA) - The major law directly 
affecting DOD systems acquisition management is the NEPA, requiring the 
DOD to: 
• Provide full disclosure of possible impacts, alternatives, and mitigation 

measures.  
• Consider the environment in its decisions.  
• Inform and involve the public in that process.  
• Seek less environmentally damaging ways to accomplish the mission or 

operation.  
• Support informed decisions with quality documents. All acquisition 

programs, regardless of size, must evaluate whether the development, 
testing, production, fielding, operation and maintenance, and disposal of 
the system will affect the environment.  

PMs should design the system in such a way as to minimize any negative 
impact on human health and the environment. DoD policy requires the 
Program Manager of each systems acquisition program to prepare a NEPA 
Compliance Schedule. The NEPA Compliance Schedule is required as part 
of the PESHE, and should be integrated into the overall program schedule. 

H7.3 Acquisition decision support systems 
Planning, Programming, Budgeting, and Execution - The Planning, 
Programming, Budgeting and Execution (PPBE) process is DOD’s primary 
resource allocation process that:  
• Is a calendar-driven process used for securing funding for a major 

acquisition program.  
• Offers the basis for informed affordability assessment and resource 

allocation decisions.  
• Provides a formal, systematic structure for making decisions on policy, 

strategy, and the development of forces and capabilities to accomplish 
anticipated missions.  

 
Joint Capabilities Integration and Development System  - The JCIDS:  
• Is driven by warfighting deficiencies or needs.  
• Determines mission requirements and strategies for meeting those 

requirements.  
• Provides the basis for establishing priorities.  
 
Acquisition Management System - The Acquisition Management System:  
• Establishes a management process to translate user needs and 

technological opportunities into reliable and sustainable systems that 
provide capability to the user.  

• Is an event-driven process that emphasizes risk management.  
• Involves the process of periodic review and approval of programs to 

progress into subsequent phases of the acquisition life cycle.  
• Provides a streamlined management structure.  
• Links milestone decisions to demonstrated accomplishments. 
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Appendix I 
Data Collection 

Historical software data from the development process is crucial to cost 
analysts in predicting and validating size, cost, and schedule for existing and 
future software development projects.  The data collection approach 
described here is intended to populate a repository for data collected during 
the software development process. 

The data contains key information for each individual software component 
or Computer Software Configuration Item (CSCI) within a single project.  
Data is collected at various maturity levels during the development process.  
Ideally, data should be collected at each of the major development 
milestones, starting with the concept phase through final qualification 
testing, to assist in the resolution of the project status and growth.  A 
fundamental principle behind any data collection effort is validation of all 
data prior to it becoming part of the database.  Without validation, the data is 
meaningless and of no value.  The process involves establishing a common 
set of references (definitions and timeframes) for the possible estimating 
models, determining the development environment, and carefully examining 
the data to ensure it is factual and realistic.   

The data collected for each CSCI describes the basic information such as 
product sizing (new, modified, and reused code), the development effort and 
maturity, and the development environment (language, experience, and so 
forth).  The data fields should allow easy input regardless of the model used 
to create the data.   

I.1 Software data collection overview 
The purpose of this series of data collection definitions and instructions is to 
obtain the characteristics of software projects and their respective 
development environments for future use in software cost estimating.  This 
data can be included in a database of software product sizes, schedules, 
effort, environment, and other factors that analysts can use to compare and 
validate software cost estimates for new and developing systems. 

I.1.1 Model comparisons 
The set of estimating models used in the data collection definitions include 
the PRICE STM model, the Galorath Incorporated System Evaluation and 
Estimation of Resources - Software Estimating ModelTM (SEER-SEMTM) 
model (now SEERTM for Software), the COnstructive COst MOdel 
(COCOMO/COCOMO II) developed by Dr. Barry Boehm et al, the 
Software Engineering Inc. SageTM model developed by Dr. Randall Jensen, 
the REVised Intermediate COCOMO (REVIC) model developed by 
Raymond Kile and the Air Force Cost Analysis Agency (AFCAA), and the 
Quantitative Software Management Software Lifecycle Management Model 
(SLIM®) developed by Larry Putnam.  Instructions and definitions within 
this section include a table that provides a cross-reference between the 
models to help clarify the data entries and relationships.   

Real knowledge is to know the extent 
of one's ignorance. 

                                       Confucius  
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Most common estimating models use similar parameters to describe project 
development environments.  The set of parameter descriptions used in this 
data collection section focuses on six widely used models as the context for 
describing CSCIs.  However, definitions and rating scales for the individual 
parameters vary between models.  For example, the Analyst Capability 
(ACAP) parameter definition for a value of “0” in the data collection model 
corresponds to a Sage value of “Highly motivated AND experienced team 
organization” and a SEER-SEMTM value of “Near Perfect Functioning Team 
(90th Percentile).”  The Sage model range for ACAP is from 0.71 to 1.46.  
The SEER-SEMTM range is from Very Low to Very High.  The database 
normalizes the model scales by using a value from 0 to 10 for all estimating 
environment parameters. 

None of the estimating models have identical parameter sets, for example, 
the personnel environment.  The Sage, SEER-SEMTM and REVIC models 
use a Language Experience (LEXP) parameter, the PRICE STM model uses a 
CPLX1 parameter, and COCOMO II uses a Language and Tools Experience 
(LTEX) parameter.  Occasionally, estimating model parameters from one 

Table I-1: Estimating model parameter comparison 
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model do not map directly to another or a parameter may include the effects 
of two or more parameters.  For example, the REVIC VEXP (Virtual system 
experience) parameter collectively represents the SEER-SEMTM DEXP 
(Development system experience) and PEXP (Practices experience) 
parameters.  Table I-1 compares the major estimating model parameters used 
in the data collection discussion. 

I.1.2 Format 
The data collection form description defines the full set of data elements 
necessary to describe a software development project.  The data elements are 
compatible with commonly used cost estimating models, enabling easy 
transfer of data using familiar terms and definitions.  The data for each CSCI 
includes: (1) CSCI description, (2) size data, (3) development environment 
data, (4) software development actuals – cost and schedule, and (5) data 
validation results. 

The bulk of the data collection form is used to collect size data for the 
software development project and the environment in which the software 
product is developed. 

Development effort, as implemented in the major estimating models, is in 
the form: 

β
ekld SCCE =      (I-1) 

where the development effort (Ed  ), measured from the start of full-scale 
development (Software Requirements Review [SRR]) through successful 
completion of acceptance testing by the developer, is the product of  the 
development environment impact and the adjusted effective size.  The terms 
are defined as: 

C1 = scaling constant, 

Ck = environment adjustment factor, 

Se = effective software size, and 

β = entropy factor (usually about 1.2) representing a size penalty for 
large software developments. 

It is necessary to collect both size data and environment factors to accurately 
relate the development effort and productivity to the software product. 

The effective software development size is a measure of the work required to 
produce a software product based on an equivalent product containing only 
new source lines of code or function points.   

The development environment adjustment factors account for a multitude of 
impacts on the development effort due to developer capability, languages, 
and tools, as well as constraints imposed on the developer such as product 
requirements, development standards, and pre-existing product limitations.  
There are a total of 35 environment adjustment factors as depicted in Table I-
1 that can be collected in the data collection form.  The form allows the user 
to specify the factors to be collected according to the dictates of one of six 
formats:  (1) COCOMO/ COCOMO II, (2) Price-S, (3) REVIC, (4) Sage, (5) 
SEER-SEMTM and (6) SLIM®.  The selected format is specified by the user 
as a data element in the collection form.   

The CSCI level is the level defined by independent requirements 
specifications (SRS) and interface control specifications (IRS).  The CSCI 
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component level is compatible with estimating models and is the project 
level for tracking and comparison of software functionality represented by an 
independent task.   

I.1.3 Structure 
The data collection structure is arranged into three primary data groups: 
project summary data, CSCI information, and environment information.  The 
specific CSCI data contains the general “CSCI Information” (a row in the 
spreadsheet representation of Table I-2) and the “Environment” information. 

Project Summary Data identifies and describes the software system product 
and lists developers or contractors and the related contact information as 
well as general comments regarding the project.  The comment field allows 
the individual(s) entering information to describe additional relevant project 
information such as new functionality for this activity or that an Engineering 
Change Proposal (ECP) affected certain CSCIs.  The Project Summary Data 
(Table I-3) description encompasses a set of project-related CSCIs. 

 
The CSCI information section lists each individual component by CSCI 
along with a description, maturity or status at the time of entry, and the 
reference model or tool used to originally develop the data.   

The Environment section of the data entry form contains several subsections 
to capture the information relevant to the parameters associated with size, 
product, and development environment. 

I.2 Software data collection details 
The CSCI data entry forms (spreadsheet format) are model independent.  In 
other words, independent of the model that was used in creating the project 
estimate data, the model definitions, phraseology, or methodology used to 
track the project data, the information will transfer accurately onto the data 
entry form.  The parameter definitions include cross-references to like values 
in the major cost estimation models as well as the parameter Complexity 
Attribute (CA) definitions defined originally by Barry Holchin85

I.3 CSCI description  
. 

The following descriptions identify the data needed in each field and may 
include an example of the type of data to be entered: 

                                                 
85 Barry Holchin, known for 1996 Code Growth Studies, developed Complexity 
Attributes for government contract software development data gathering efforts.  

Table I-3: Project summary data 
Equiv 
CMMI 
Level 

CSCI 
Status 

Subcontr 
% 

Estimating 
Tool Env Platform Application Reserved Reserved 

3 FQT 0 Sage Mil Space Bus   

 

Table I-2: CSCI information 

PROJ CSCI 
ID 

SUB 
CSCI 

ID 
VER 

Product CSCI Attributes 

Contractor 
POC 

Description 
Name Phone E-mail 

Milstar Bus Antenna 
C+1 7 ACME J.P. 

Jones 

310-
555-
1324 

jpjones@acme.com 
2014 virtual 
antenna 
control 
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PROJ: Identifies the major acquisition program that contains the CSCI (e.g., 
MilStar). 

CSCI ID: An alphanumeric name identifying the CSCI. 

SUB CSCI ID: An alphanumeric designation identifying next level 
breakdown of the primary CSCI, if applicable. 

VER: Identify the version number of the CSCI software being reported, i.e. 
v1.0, v2.0, Satellite 2-5, xyz, etc.  

Contractor: The prime or sub-contractor involved in development of the 
CSCI, with point of contact information. 

Description: The text description of the CSCI, the sub-CSCI functionality. 

Equivalent CMMI Level: Configuration Maturity Model Integration 
(CMMI) assessment rating pertaining to the CSCI developer. 

CSCI Status: Development stage of the CSCI. 

Subcontractor %:  Percentage of overall CSCI being developed by the 
subcontractor. 

Estimating Tool: Estimating model (or estimating tool) utilized to develop 
the database CSCI data, (i.e., SEERTM, Sage, Price, etc.). 

Environment: Product taxonomy description for acquisition environment. 

 COM: Commercial acquisition environment description 

 GOV: Government acquisition environment description 

 MIL: Military acquisition environment description 

Platform: Taxonomy descriptor for product platform 

 SPACE: Unmanned space platform 

 MANSPACE: Manned space platform 

 AVIONIC: Avionic space platform 

 MOBILE: Mobile software platform 

 GROUND: Fixed ground software platform 

 NAUTICAL: Nautical software platform 

MANUFACTURING: Manufacturing system software platform   

Application: Taxonomy descriptors for specific application areas. 

 PAYLOAD: Spacecraft payload 

 EXEC:  Operation system/System executive 

 SUPPORT: Development and systems support applications 

 BUS: Spacecraft bus 

 OPSCTL:  Operations and control application   

 PLAN: Missions planning application 

 TEST: Test and simulation software 

 TRAINING: User or maintenance training application  

SIGNAL PROCESSING (SigProc): Signal processing application 
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Table I-5: System integration data 

System Integration 

Progs 
Concur 

Concur of 
I&T Sched 

Hardware  
Integ (%) 

3 Nominal 28 

 

 COMMUNICATIONS: Communications software application 

 DATABASE: Database management/information system 

 MIS: Management information system 

Reserved: Taxonomy identifiers not assigned. 

I.3.1 Requirements 
The CSCI information includes a description of the software requirements 
development activity; that is, a description of the work to be performed prior 
to the start of full-scale development.  This is outside the effort used to 
determine the productivity rate, but is important in the computation of the 
overall development effort.  The necessary elements are: the relative 
percentage of requirements completed before the start of the project, the 
formality of the requirements, and an indication of whether or not the 
software development effort includes the support effort following the start of 
full-scale development.   

% Comp @ Start: Amount of requirements development/specification 
(Table I-4) effort which will be complete at contract award. 

Formality: Formality to which software requirements will be analyzed and 
specified.  This parameter specifies the amount of effort added to the 
development estimate to support the definition prior to the start of 
requirements full-scale development.  This effort includes definition, 
specification and review of software function, performance, interface, and 
verification requirements.  The formality rating is specified as a percentage, 
typically in the range of 0-15% relative to the full-scale development effort.   

Effort After Base: Software requirements that were supported after the up-
front software requirements activity is complete. 

I.3.2 Systems integration 
Systems integration accounts for the effort expended to support the 
integration of the software product into a higher level system 
(Table I-5).  A stand-alone software product has zero integration 
effort. 

Progs Concur: Number of CSCIs that will be concurrently 
integrated with the developed software and interface with it 
directly. 

Concur of I&T Sched: Degree of concurrency or overlap 
between the development activities and the integration and testing 
activities.  The rating is as follows: 

Nominal System integration occurs after CSCI testing is complete. 
High System integration begins during CSCI integration. 
Very High Majority of system integration occurs prior to CSCI 

development testing completion. 
Extra High All systems integration occurs during CSCI development.

   

Hardware Integ:  Degree of difficulty in integrating the development 
software with the operational or target hardware.  This parameter relates to 
the relative effort required in software-hardware integration.  Ratings are 
specified as percentages, and are typically in the range of 0-32% relative to 
the full-scale software development effort.  This effort is in addition to the 

Table I-4: Requirements data 

Requirements 

% Comp 
@ Start Formality 

Effort 
After 
Base 

93 8% no 
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development effort (0% corresponds to no hardware integration, 32% 
corresponds to significant hardware integration effort with concurrent 
hardware development.) 

I.4 Size data 

I.4.1 Sizing data 
The “Sizing Data” group of the data collection worksheet is segmented into 
major elements and further separated into more definitive sub-elements.  
Size data is employed to assemble the estimate for the CSCI development 
software effort.  Software size can be specified as source lines of code (Table 
I-6) (SLOC) or as function points.    

The major segments of the sizing data with appropriate sub-
elements are as follows: 

1. Source Code (KSLOC) 
2. Reuse Adjustments 
3. Software Source  
4. Function Points 
5. Programming Source Language 
6. Requirements 
7. System Integration 

I.4.1.1 Source code (KSLOC) 
Total: Describes the total size of the program in thousands of source lines of 
code (KSLOC).  This value relates to physical size characteristics and is 
determined by adding the new, modified and reused source code.   

New: Specifies the number of source lines of code (KSLOC) to be created.  

Reused: Total unmodified source code (KSLOC).  Reused source code is 
alternately described as Verbatim or used without rework. 

Modified:  Specifies the amount of pre-existing source lines of code 
(KSLOC) at the module level to be modified in order to add or change an 
existing functionality in the developed CSCI.   Modified code, by definition, 
is contained in reused (pre-existing) white-box modules.  If one countable 
SLOC within a module is added, deleted, or modified, the entire countable 
SLOC in the module is counted as modified SLOC. 

Effective (KESLOC): Measure of work required to produce a software task.  
Based on the number of KSLOC to be produced, the effort to understand the 
existing software testing and integration effort required.   

I.4.1.2 Reuse adjustments 
The reuse adjustments (Table I-7) are represented by %RD, %RI, and %RT. 

%RD: The amount of redesign (software architecting and detailed design) 
that is required to make the pre-existing software functional within the 
software item.  The redesign factor includes effort required to make: (1) 
software architecture changes, (2) software detailed design changes, and (3) 
documentation updates.  This factor also includes reverse-engineering 
required to (1) understand the software prior to updates and deletions, and 

Table I-6: Source code sizes 
Source Code (KSLOC) 

Total New Reused Modified Effective 

 45.9 3.9  42  0  7.6  

 
 

Table I-7: Reuse data 

Reuse Adjustments 

%RD %RI %RT 

.50 .50 .75 

 



206 
 

(2) revalidate the software design.  The value is specified as a decimal 
fraction. 

%RI: The portion of the pre-existing code that requires re-implementation 
(coding and unit testing) to make it functional within the software item.  The 
implementation factor includes effort required to: (1) evaluate interface 
definitions for changes in reused software, (2) code changes to the reused 
software, (3) formally review code changes, and (4) perform unit testing of 
code impacted by the changes to the implementation.  The value is specified 
as a decimal fraction. 

%RT: The effort required to test the pre-existing software, expressed as a 
portion of the effort that would have been required had the software been 
developed from scratch.  The test factor includes effort required to: (1) 
update test plans and procedures, (2) develop test drivers and simulators, (3) 
perform formal integration testing, and (4) generate test reports for the 
updated reused software.  The value is specified as a decimal fraction. 

I.4.1.3 Software source 
SW Source: For pre-existing code, name of original software system (Table 
I-8) that contributed the source code (e.g., Milstar). 

I.4.1.4 Function points 
Function points are an alternative measure for 
specifying the size (Table I-9) of a software system 
that quantifies the information processing 
functionality associated with major external data or 
control input, output or file types.  The counting 
guidelines are specified according to the definitions 
and counting rules published by the International 
Function Point Users Group (IFPUG) in the 
Function Point Counting Practices: Manual Release 
4.2. 

UFP: Unadjusted function point count. 

VAF: Value adjustment factor modifies the UFP count to account for 
software technical and operational characteristics. 

I.4.1.5 Programming source language   
The programming source language (Table I-10) is the primary programming 
language(s) used by the programmers in the development of the software 
product.  The language name(s) should correspond to the source language 
count. 

Program Source Lang: The implementation language for the software 
product. 

I.5 Development environment data 
The development effort and schedule data cannot be determined by the size 
data alone as described in Equation (I-1).  The environment adjustment 
factor Ck accounts for all of the environmental effects present in the software 
development.  The effects can be grouped into the following four categories: 

1. Personnel 
2. Support 

Table I-8: 
Reuse source 

SW 
Source 

Milstar 

 

Table I-9: Function Point Data 

Function Points 

New Deleted Modified UFP VAF 

50 3 7 40 1.2 

 

Table I-10: 
Source language 

Program 
Source 

Language 

C++/Ada 
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3. Management 
4. Product 

 
The purpose of the CSCI environment (Attributes) data (Table I-11) is to 
capture pertinent, valid information relating to the economic and time 
expenditures on a project that translate into project costs.  The availability of 
this project information allows the cost and schedule to be estimated in such 
a way as to reduce the risk of either over or under estimating effort and 
schedule.   

The project environment factors are entered in the development environment 
section using the 0 to 10 attribute ratings described in Section I.8 
(Development environment attributes) for each of the parameters. 

The Attribute Ratings are generic descriptors for the various values 
associated with the particular model that the data was created or tracked in.  
Not all cells will have values.  

 

I.6 Cost, schedule data 
The next data group to be collected is the effort (person-months), schedule 
and development technology constant (Table I-12).  This data must be 
collected at the end of formal development; that is, the Final Qualification 
Test (FQT) associated with the customer acceptance of the CSCI.  The data 
to be collected includes three major activities:  

1. The effort expended prior to the start of full-scale development that 
corresponds to the acceptance of the SRS and ICD 

2. The total full scale development effort including architecture design, 
code and unit test, and CSCI integration  

3. The effort required for integration of the CSCI into the next higher 
assembly (Initial Operational Capability) 

The schedule measures the elapsed time (months) from the start of full-scale 
development through FQT. 

The development productivity is computed from the ratio of the effective 
SLOC (ESLOC) eS  and the full-scale development effort ; that is,  

de ESPR /=  lines per person-month (ESLOC/PM) (I-2) 

Productivity is often stated in hours per ESLOC or ESLOC per hour.  The 
basis of the LPPM measure is generally assumed to be 152 hours per person-

dE

Table I-11: Environment data 
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month.  A basis of 160 hours per person-month (PM) is sometimes used, but 
that occurrence is rare. 

ESLOC per PM: Effective source lines of code per person-month are one of 
many productivity measures.   This measure specifies the rate of ESLOC 
production.   

Req Analysis: The number of months (PM) expended in performing 
requirements analysis prior to the start of full-scale development (Software 
Requirements Review). 

Full-Scale Development: Total effort (PM) for analysis, development, and 
first level CSCI integration.   

Integration Test: The number of months (PM) expended to perform 
integration testing. 

Elapsed Schedule: The number of months elapsed since the beginning of 
the full-scale software development.  The maximum elapsed schedule occurs 
at the end of the FQT. 

Milestone Status: The point in the project life cycle that this information is 
obtained from (for example: SDR, PDR, CDR, FQT, etc.).   

The values for requirements analysis, full-scale development, integration 
test, and elapsed schedule are actual measurements at FQT.  The values at 
earlier milestones are projections or estimates.  The important data at pre-
FQT milestones is related to the project size, which tends to increase during 
development. 

I.7 Technology constants 
Technology constants (Table I-13) are measures of the efficiency, capability, 
or “goodness” of the development organization.  The basic technology 
constant describes the developer’s raw capacity unimpeded by the project 
constraints or project imposed environment.  The effective technology 
constant includes the efficiency limitations imposed by the software 
development constraints and directly impacts the effort (cost), schedule, and 
productivity. 

Basic Technology Constant (Ctb): The basic technology constant is 
typically between 5,500 and 7,500.  The Ctb value is obtained from the Sage 
and/or SEER-SEMTM estimating tools or can be calculated from the 
development environment attributes.  The basic technology constant is 
formally defined in Section 8.2. 

Effective Technology Constant (Cte): The effective technology constant is 
the resulting technology measure that accounts for the degradation of the 
development team efficiency due to the limitations of the environment and 
product constraints.  The effective technology constant is always less than 

Table I-12: Development effort and schedule data 
Current Effort (PM) Current Schedule  

SLOC 
per PM 

Req. 
Analysis 

(PM) 

Full-
Scale 
Devel 
(PM) 

Integration 
Test 
(PM) 

Elapsed 
Schedule 
(Months) 

Milestone 
Status 

125   242 1874  483  25.5  SDR 

 

Table I-13: 
Technology 

constants 
Technology 
Constants 

Basic Effective 

6,474.8 3,150.2 
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the basic technology constant.  The effective technology constant is formally 
defined in Section 8.2. 

I.8 Development environment attributes 
The remainder of this appendix consists of tables presenting the various 
project environment factors which are entered in the development 
environment.  The parameters are grouped by the four categories explained 
in Section I.5.  Additional information may be applicable and, if so, is 
provided following the relevant rating value table. 

Note that not all cells or rows will have values that apply to that factor. 

I.8.1 Personnel 
Detailed discussion of the personnel parameters (Tables I-14 through I-21) 
are contained in Sections 8 (Developer capability evaluation) and 9 
(Development environment evaluation). 

Table I-14: ACAP rating values 

ACAP – Analyst Capability 

Value CA Definition 7 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 

Near 
Perfect/Perfect 
Functioning Team 
(90-100th 
percentile) 

Highly 
motivated 
AND 
experienced 
team 
organization 

Near Perfect 
Functioning 
Team (90th 
percentile) 

90th percentile 90th percentile Outstanding 
crew 

1       

2 Extraordinary (80th 
percentile) 

Highly 
motivated OR 
experienced 
team 
organization 

   Extensive 
experience 

3   Extraordinary              
(75th percentile) 75th percentile 75th percentile  

4 
Functional AND 
Effective (60th 
percentile) 

     

5 50th percentile 

Traditional 
software 
development 
organization 

Functional AND 
effective (55th 
percentile) 

55th percentile 55th percentile Normal crew 

6       

7      Mixed 
experience 

8 
Functional with 
low effectiveness                   
(30th percentile) 

Poorly 
motivated OR 
non-
associative 
organization 

Functional with 
low affectivity                  
(35th percentile  

35th percentile 35th percentile  

9      Relatively 
inexperienced 

10 
Non-functioning 
team (5-15th 
percentile) 

Poorly 
motivated 
AND non-
associative 
organization 

Poorly 
functioning or 
non-functioning 
team (5-15th 
percentile) 

15th percentile 15th percentile  
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Table I-15: PCAP rating values 

PCAP – Programmer Capability 

Value CA Definition 31 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 

Near 
Perfect/Perfect 
Functioning Team          
(90-100th 
percentile) 

Highly 
motivated 
AND 
experienced 
team 
organization 

Near Perfect 
Functioning 
Team (90th 
percentile) 

90th percentile 90th percentile Outstanding 
crew 

1       

2 Extraordinary                 
(80th percentile) 

Highly 
motivated OR 
experienced 
team 
organization 

   Extensive 
experience 

3   Extraordinary              
(75th percentile) 75th percentile 75th percentile  

4 
Functional AND 
Effective (60th 
percentile) 

     

5 50th percentile 

Traditional 
software 
development 
organization 

Functional AND 
effective (55th 
percentile) 

55th percentile 55th percentile Normal crew 

6       

7      Mixed 
experience 

8 
Functional with low 
effectiveness                  
(30th percentile) 

Poorly 
motivated OR 
non-
associative 
organization 

Functional with 
low affectivity                 
(35th percentile  

35th percentile 35th percentile  

9      Relatively 
inexperienced 

10 
Non-functioning 
team  (5-15th 
percentile) 

Poorly 
motivated 
AND non-
associative 
organization 

Poorly 
functioning or 
non-functioning 
team (5-15th 
percentile) 

15th percentile 15th percentile  

 

Table I-16: PROFAC rating values 

PROFAC – Productivity Factor 

Value CA Definition 36 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 
More than four 
years average 
experience 

    14 

1      13 

2 
Three years 
average 
experience 

    12 

3      11 
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PROFAC – Productivity Factor 

Value CA Definition 36 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

4 Two years average 
experience     10 

5      9 

6 One year average 
experience     8 

7      7 

8 
Four months 
average 
experience 

    6 

9      5 

10 
Less than four 
months average 
experience 

    4 

 

Table I-17: AEXP rating values 

AEXP – Application Experience 

Value CA Definition 5 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 

More than 10 
years average 
experience or 
reimplementation 
by the same team 

More than 10 
years average 
experience or 
reimplementation 
by the same team 

More than 10  
years or 
reimplementation 
by the same team 

   

1      Familiar product 

2 
Seven years 
average 
experience 

Seven years 
average 
experience 

    

3   Six years average 
experience 

Six years 
average 
experience 

Six years 
average 
experience 

 

4       

5 
Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Normal, new 
product 

6       
7       

8 One year average 
experience 

One year average 
experience 

One year average 
experience 

One year 
average 
experience 

One year 
average 
experience 

 

9    
Six months 
average 
experience 

Six months 
average 
experience 

New line of 
business 

10 
Less than four  
months 
experience 

Less than four 
months 
experience 

Less than four 
months 
experience 

Two months 
average 
experience 

Two months 
average 
experience 
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Table I-18: DEXP rating values 

DEXP – Development System Experience 

Value CA Definition 4 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
More than four 
years average 
experience  

More than four 
years average 
experience  

 
More than four 
years average 
experience  

More than four 
years average 
experience  

 

1       

2 
Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

 

3       

4 
Two years 
average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

 

5       

6 One year average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

 

7       

8 
Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

 

9       

10 
Less than four 
months 
experience 

Less than four 
months 
experience 

Less than four 
months 
experience 

Less than four 
months 
experience 

Less than four  
months 
experience 

 

 

Table I-19: LEXP ratings values 
LEXP – Programming Language Experience 

Value CA Definition 6 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
More than four 
years average 
experience  

More than four 
years average 
experience  

 
Six years 
average 
experience  

Six years 
average 
experience  

 

1   
Four years 
average 
experience 

   

2 
Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

 

3       

4 
Two years 
average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

   

5      Normal 

6 One year average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

 

7    
Six months 
average 
experience 

Six months 
average 
experience 

 

8 
Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

   

9       
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LEXP – Programming Language Experience 

Value CA Definition 6 Sage SEER-SEM REVIC COCOMO II PRICE-S 

10 
Less than four 
months 
experience 

Less than four 
months 
experience 

Less than four 
months 
experience 

Two months 
average 
experience 

Two months 
average 
experience 

New language 

 
Table I-20: PEXP rating values 

PEXP – Practices and Methods Experience 

Value CA Definition 32 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
More than four 
years average 
experience  

More than 
four years 
average 
experience  

 
Six years 
average 
experience  

Six years 
average 
experience  

 

1   
Four years 
average 
experience 

   

2 
Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

 

3       

4 Two years average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

   

5       

6 One year average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

One year 
average 
experience 

 

7    
Six months 
average 
experience 

Six months 
average 
experience 

 

8 
Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

   

9       

10 Less than four 
months experience 

Less than 
four months 
experience 

Less than four 
months 
experience 

Two months 
average 
experience 

Two months 
average 
experience 

 

 
Table I-21: TEXP rating values 

TEXP – Target System Experience 

Value CA Definition 34 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
More than four 
years average 
experience  

More than 
four years 
average 
experience  

    

1   
Four years 
average 
experience 

   

2 
Three years 
average 
experience 

Three years 
average 
experience 

Three years 
average 
experience 

   

3       
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TEXP – Target System Experience 

Value CA Definition 34 Sage SEER-SEM REVIC COCOMO II PRICE-S 

4 Two years average 
experience 

Two years 
average 
experience 

Two years 
average 
experience 

   

5       

6 One year average 
experience 

One year 
average 
experience 

One year 
average 
experience 

   

7       

8 
Four months 
average 
experience 

Four months 
average 
experience 

Four months 
average 
experience 

   

9       

10 Less than four 
months experience 

Less than 
four months 
experience 

Less than four 
months 
experience 

   

 

The Target System Experience (TEXP) is the effective average experience 
(years) of the development team with the target (final) system on which the 
developed software product will execute, including both the hardware 
environment and the resident operating system, if any.  If the target system is 
essentially the same as the development system, then TEXP will be equal to 
the Development System Experience (DEXP). 

I.8.2 Support 
The Development System Complexity (DSYS) parameter (Table I-22) rates 
the relative complexity of the development system, compilers, file interfaces 
and support environment.  This parameter is closely linked to DEXP.  

Table I-22: DSYS rating values 
DSYS – Development System Complexity 

Value CA Definition 35 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 Single module (no 
external interfaces)  

Single-user 
machines 
(Windows, 
Mac), 
standalone 
systems, may 
be networked  

Single user 
machines 
(Windows, Mac),   
standalone 
systems, may be 
networked  

   

1       

2 Loosely coupled 
items      

3       

4       

5 
Minimum coupling 
and timing 
constraints 

Multi-user 
systems (NT 
Server, VAX 
VMS, UNIX) 

Multi-user 
systems    (NT 
Server, VAX   
VMS, UNIX) 

   

6       

7 Numerous or 
complex interfaces      

8       

9       
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DSYS – Development System Complexity 

Value CA Definition 35 Sage SEER-SEM REVIC COCOMO II PRICE-S 

10 Tight coupling and 
timing constraints 

Distributed 
network 
where 
developers 
must have 
cognizance 
of the 
distributed 
functionality 

Distributed 
network where 
developers must 
have cognizance 
of the distributed 
functionality 

   

 

Development System Volatility (DVOL) determines the impact of changes 
to the development virtual machine.  These may be changes in the program 
editors, compilers or other tools, changes in the operating system and 
command languages, or changes in the development hardware itself.     

• REVIC – DVOL (Table I-23) is contained in the Virtual Machine 
Volatility (VIRT) parameter.  The target system volatility portion of 
VIRT is defined by the parameter Target System Volatility 
(TVOL).  

• COCOMO II – The Platform Volatility Parameter (PVOL) refers to 
the complexity of hardware and software (operating system, 
database management system, etc.) the software product calls on to 
perform its tasks.   

 
Table I-23: DVOL rating values 

DVOL – Development System Volatility 

Value CA Definition 38 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
No major changes, 
minor changes 
each year  

No major 
changes, 
minor 
changes 
each year 

No major 
changes, minor 
changes each 
year 

   

1       

2 
Major change each 
12 months, minor 
each month 

Annual major 
changes, 
minor 
monthly 
changes 

Major change 
each 12 months, 
minor each 
month 

   

3       
4       

5 
Major change each 
six months, minor 
each 2 weeks 

Semi-annual 
major 
changes, 
minor bi-
weekly 
changes 

Major change 
each six months, 
minor each  two 
weeks 

   

6       
7       

8 
Major changes 
each two months, 
minor each week 

Bi-monthly 
major 
changes, 
minor weekly 
changes 

Major changes 
each two 
months, minor 
each week 

   

9       
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DVOL – Development System Volatility 

Value CA Definition 38 Sage SEER-SEM REVIC COCOMO II PRICE-S 

10 
Major change each 
two weeks, minor 
two times a week 

Bi-weekly 
major 
changes, 
minor 
changes 
every two 
days 

Major change 
each two weeks, 
minor two times 
a week 

   

 
The Modern Practices (MODP) (Table I-24) parameter evaluates the usage 
of modern software development practices and methods at the time the 
software design begins.  The practices include analysis and design, 
structured or object-oriented methods, development practices for code 
implementation, documentation, verification and validation, database 
maintenance, and product configuration control.  The use of modem software 
development methods is measured at the start of the formal development 
process (SRR) and includes only practices that can be considered 
organization culture at that time. 

Table I-24: MODP use rating values 
MODP – Modern Practices Use 

Value CA Definition 20 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 Maximum benefit of 
MPPs realized  SEI CMMI = 5 

Routine use of 
a complete 
software 
development 
process 

Routine use of a 
complete 
software 
development 
process 

  

1       

2       

3 

General use of 
MPPs by personnel 
experienced in their 
use 

SEI CMMI = 4 
Reasonably 
experienced in 
most practices 

Reasonably 
experienced in 
most practices 

  

4       

5 

Some use of MPPs 
by personnel 
experienced in their 
use 

SEI CMMI = 3 
Reasonably 
experienced in 
most practices 

Reasonably 
experienced in 
most practices 

  

6       

7       

8 
Beginning 
experimental use of 
MPPs 

SEI CMMI = 2 
Beginning 
experimental 
use of practices 

Beginning 
experimental use 
of practices 

  

9       

10 No use of MPPs SEI CMMI = 1 

No use of 
modern 
development 
practices 

No use of 
modern 
development 
practices 

  

 

The Process Improvement (PIMP) (Table I-25) parameter evaluates the use 
of development technology improvement by comparing established (culture) 
development practices with those to be used in the current software 
development.  The results are then compared with the SEI/CMMI ratings to 
measure the level of improvement planned. 
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Table I-25: Process improvement rating values 
PIMP – Process Improvement 

Value CA Definition 33 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 

No change in 
Modern 
Development 
Practices (MDP) 
use from the 
established 
development 

No change in 
MDP use 
from the 
established 
development 

No change in 
MDP(MDP) use 
from the 
established 
development 

   

1       

2       

3 

Moderate change – 
Organization 
improving 
development 
technologies 
equivalent to a 1 
level CMMI 
transition on the 
MDP practices use 
rating 

Moderate 
change – 
Organization 
improving 
development 
technologies 
equivalent to 
a 1 level 
CMMI 
transition on 
the MDP 
practices use 
rating 

Moderate 
change – 
Organization 
improving 
development 
technologies 
equivalent to a 1 
level CMMI 
transition on the 
MDP practices 
use rating 

   

4       

5       

6       

7 

Major change – 
Organization 
improving 
development 
technologies 
equivalent to a 2 
level CMMI 
transition on the 
MDP practices use 
rating 

Major change 
– 
Organization 
improving 
development 
technologies 
equivalent to 
a 2 level 
CMMI 
transition on 
the MDP 
practices use 
rating 

Major change – 
Organization 
improving 
development 
technologies 
equivalent to a 2 
level CMMI 
transition on the 
MDP practices 
use rating 

   

8       

9       

10 

Extreme change – 
Organization 
improving 
development 
technologies 
equivalent to a 3 
level CMMI 
transition on the 
MDP practices  use 

Extreme 
change – 
Organization 
improving 
development 
technologies 
equivalent to 
a 3 level 
CMMI 
transition on 
the MDP 
practices  
use 

Extreme change 
– Organization 
improving 
development 
technologies 
equivalent to a 3 
level CMMI 
transition on the 
MDP practices  
use 

   

 

The Practices and Methods Volatility (PVOL) (Table I-26) parameter rates 
the frequency of changes to the development practices and methods being 
used.  This rating depends on the scope or magnitude of the changes, as well 
as the frequency with which they occur.  A minor change is any change that 
impacts the development team, but does not require minor delays or 
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adjustments to the process.  A major change requires a significant adjustment 
to the development process, and has a major impact on the development 
effort and schedule. 

• REVIC – This attribute is accounted for in the VIRT parameter. 
 
The reusability level required parameter measures the relative cost and 
schedule impact software reuse requirements.  This factor depends on the 
breadth of the required reuse (RUSE) (Table I-27); for example, the relative 
cost of a product with single application is lower than that required for 
components designed for reuse across a broad spectrum of applications).  
 

 Table I-26: PVOL rating values 
PVOL – Practices/Methods Volatility 

Value CA Definition 25 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
No major changes, 
minor changes 
each year  

No major 
changes, 
minor 
changes 
each year 

No major 
changes, minor 
changes each 
year 

No major 
changes, minor 
changes each 
year 

  

1       

2 
Major change each 
12 months, minor 
each month 

Annual major 
changes, 
minor 
monthly 
changes 

Major change 
each 12 months, 
minor each 
month 

Major change 
each 12 months, 
minor each 
month 

  

3       

4       

5 
Major change each 
six months, minor 
each two weeks 

Semi-annual 
major 
changes, 
minor bi-
weekly 
changes 

Major change 
each six months, 
minor each two 
weeks 

Major change 
each six months, 
minor each two 
weeks 

  

6       

7       

8 
Major changes 
each two months, 
minor each week 

Bi-monthly 
major 
changes, 
minor weekly 
changes 

Major changes 
each two 
months, minor 
each week 

Major changes 
each two 
months, minor 
each week 

  

9       

10 
Major change each 
two weeks, minor 
two times a week 

Bi-weekly 
major 
changes, 
minor 
changes 
every two 
days 

Major change 
each two weeks, 
minor two times 
a week 

Major change 
each two weeks, 
minor two times 
a week 
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Table I-27: RUSE rating values 
RUSE – Reusability Level Required 

Value CA Definition 27 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 No reusability 
required No reuse No reusability 

required No reuse None  

1       

2       

3 

Software designed 
for reuse within a 
single application 
area (single 
contractor; 
multiple/single 
customers) 

Reuse single 
mission 
products 

Software will be 
reused within a 
single 
application area 

Reuse single 
mission products Across project  

4       

5     Across program  

6       

7 

Software designed 
for reuse within a 
single product line 
(multiple 
contractors; 
multiple/single 
customers) 

Reuse across 
single 
product line 

Software will be 
reused within a 
single product 
line.  Reusability 
may impact 
multiple 
development 
teams 

Reuse across 
single product 
line 

Across product 
line 

 

8       

9       

10 

Mission software 
developed with full 
reusability required.  
All components of 
the software must 
be reusable 

Reuse in any 
application 

Mission software 
developed with 
full reusability 
required.  All 
components of 
the software 
must be 
reusable 

Reuse in any 
application 

Across multiple 
product lines  

 
The schedule expansion/compression parameter Schedule Constraint 
(SCED) (Table I-28) relates the proposed schedule to the optimum 
development schedule.  Optimum is interpreted in terms of most efficient 
personnel utilization or efficiency.  Minimum development schedule is 
the shortest development schedule possible with a defined size, 
complexity, and technology (personnel, tools, etc.). 
 

• Sage, SEER-SEM – The SCED parameter cannot be used to 
compress the schedule, since Sage and SEER-SEM compute (by 
default) the minimum development time.  The SCED parameter 
can be used to expand the schedule.   

 
Table I-28: Required schedule rating values 

SCED – Required Schedule (calendar months) 

Value CA Definition 2 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 

Time to 
development 
completion; 75% of 
optimal 
development 
schedule 

Minimum 
schedule 

Minimum 
schedule 

<75% use of 
available 
execution time 

<75% use of 
available 
execution time 
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SCED – Required Schedule (calendar months) 

Value CA Definition 2 Sage SEER-SEM REVIC COCOMO II PRICE-S 

1 80% of optimal 
completion date      

2 85% of optimal 
completion date   

85% use of 
available 
execution time 

85% use of 
available 
execution time 

 

3 90% of optimal 
completion date      

4 95% of optimal 
completion date      

5 
Optimal 
development 
schedule (100%) 

Optimum 
schedule 

Optimum 
schedule 

100% use of 
available 
execution time 

100% use of 
available 
execution time 

 

6 115% of optimal 
completion date      

7 130% of optimal 
completion date   

130% use of 
available 
execution time 

130% use of 
available 
execution time 

 

8 145% of optimal 
completion date      

9 160% of optimal 
completion date   

160% use of 
available 
execution time 

160% use of 
available 
execution time 

 

10 
Greater than 175% 
of optimal 
completion date 

     

 
The automated tool support parameter (TOOL) (Tables I-29 and I-30) 
indicates the degree to which the software development practices have 
been automated and will be used in the software development.  Practices 
not considered to be part of the development culture are not considered.  
The following list of tools and criteria can be used to aid in selection of 
the appropriate value. 
 

Table I-29: Automated tool support levels of automation 
V-Low Level of Automation (1950s era toolset) PA=10 Nominal Level of Automation (1970s era) PA=5 

Assembler Multi-user operating system 

Basic linker Interactive source code editor 

Basic batch debug aids Database management system 

High level language compiler Basic database design aids 

Macro assembler Compound statement compiler 

 Extend overlay linker 

Low Level of Automation (1960s era) PA=7 Interactive text editor 

Overlay linker Simple program design language (PDL) 

Batch source editor Interactive debug aids 

Basic library aids Source language debugger 

Basic database aids Fault reporting system 

Advanced batch debug aids Basic program support library 
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 Source code control system 

 Nominal Level of Automation (1970s era) PA=5 

 Virtual memory operating system 

 Extended program design language 

High Level of Automation (1980s era) PA=3 V-High Level of Automation (2000s era) PA=1 

CASE tools Integrated application development environment 

Basic graphical design aids Integrated project support environment 

Advanced text editor (word processor) Visual programming tools 

Implementation standards enforcer Automated code structuring 

Static source code analyzer Automated metrics tools 

Program flow and test case analyzer Graphical User Interface (GUI) testing tools 

Full program support library w/CM Aids 4GLS (Fourth-Generation Languages) 

Full integrated documentation system Code generators 

Automated requirements specification & analysis Screen generators 

General purpose system simulators  

Extended design tools and graphics support  

Automated verification system  

Special purpose design support tools   

Relational Database Management System (RDBM)  

 
Table I-30: Automated tool use rating values 

TOOL – Automated Tool Support 

Value CA Definition 17 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 Automated full Ada 
APSE 

Fully 
integrated 
environment 

Advanced fully 
integrated tool 
set 

Strong, mature, 
proactive 
lifecycle tools, 
well integrated 
with processes, 
methods, reuse 

Strong, mature, 
proactive 
lifecycle tools, 
well integrated 
with processes, 
methods, reuse 

 

1       

2 

Fully integrated 
application 
development 
environment 

 

Modern, fully 
automated 
application 
development 
environment, 
including 
requirements, 
design, and test 
analyzers 

Strong, mature 
lifecycle tools, 
moderately 
integrated 

Strong, mature 
lifecycle tools, 
moderately 
integrated 

 

3  
Moderately 
integrated 
environment 

    

4 

Modern (Ada Min. 
APSE & design, 
requirements, or 
test tools) 

 

Modern visual 
programming 
tools, automated 
CM, test 
analyzers plus 
requirements or 
design tools 
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TOOL – Automated Tool Support 

Value CA Definition 17 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

5  

Extensive 
tools, little 
integration, 
basic maxi 
tools 

Visual 
programming, 
CM tools and 
simple test tools 

Basic lifecycle 
tools, moderately 
integrated 

Basic lifecycle 
tools, moderately 
integrated 

 

6 
Interactive 
(Programmer Work 
Bench) 

 
Interactive 
(Programmer 
Work Bench) 

   

7    

Simple, front 
end, back end 
CASE, little 
integration 

Simple, front 
end, back end 
CASE, little 
integration 

 

8 
Basic batch tools 
(370 OS type 
(compiler, editor)) 

Basic maxi 
tools, basic 
micro tools 

Basic batch tools 
(compiler, editor)    

9       

10 Primitive tools (Bit 
switches, dumps) 

Very few 
primitive tools 

Primitive tools 
(Bit switches, 
dumps) 

Edit, code, 
debug 

Edit, code, 
debug 

 

 

I.8.3 Management 
The management environment effects are discussed in detail in Section 9 
(Development environment evaluation). 

The Multiple Security Classification (MCLS) (Table I-31) parameter 
evaluates the impact of security requirements on the software 
development with imposed multiple levels of security classification 

• SEER-SEM – The security impact is contained in the Multiple 
Development Sites (MULT) parameter. 

• REVIC – The multiple classification level impact is contained in 
the DoD Security Classification security (SECU) parameter.  

 
Table I-31: Multiple project classification levels rating values 

MCLS – Multiple Classification Levels 

Value CA Definition 39 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0  
Multiple 
compartment 
classifications 

 Unclassified 
project 

  

1       

2       

3  

Compartment
alized and 
non-cleared 
personnel 

    

4       

5  
Classified and 
unclassified 
personnel 

    

6       

7       
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MCLS – Multiple Classification Levels 

Value CA Definition 39 Sage SEER-SEM REVIC COCOMO II PRICE-S 

8  
Common 
security 
classification 

    

9       

10    Classified project   

 
The Multiple Organization (MORG) (Table I-32) parameter evaluates the 
impact of multiple development organizations on the development 
project.  Multiple organizations always arise when mixing personnel 
from different contractors.  Multiple organizations within a single 
organization are possible, and often appear due to organization rivalry.  
For example, software, system, and test engineering groups within a 
single organization function as separate contractors. 

• SEER-SEM – The multiple organization impact is contained in 
the MULT parameter. 

• PRICE-S – The multiple organization impact is contained in the 
management complexity (CPLXM) parameter.  

Table I-32: Multiple development organization rating values 
MORG – Multiple Development Organizations 

Value CA Definition 40 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0  
Multiple 
contractors; 
single site 

    

1       

2       

3  

Prime and 
subcontractor 
organization; 
single site 

    

4       

5       

6  

Developer 
using 
personnel 
from other 
organizations 

    

7       

8       

9       

10  
Single 
development 
organization 

    

 

The multiple development site (MULT) (Table I-33) parameter describes 
the physical separation between personnel in the software development 
team. 

SEER-SEM – MULT; COCOMO II, REVIC – SITE.  The MULT and 
SITE parameters describe the organizational and site diversity within the 
personnel developing the software product.  This separation can be due to 
physical location, political boundaries, or even security issues.  A 
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program being developed in a mixed-security level environment should 
be considered as multiple organizations.  Advanced communications 
techniques, such as e-mail, Wide Area Networks, or teleconferencing can 
reduce the impact of physical separation, but will not negate it. 

 

Table I-33: Multiple development sites rating values 
MULT – Multiple Development Sites 

Value CA Definition 1 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 Single site, single 
organization 

All personnel 
at a single site 
with the same 
development 
area 

Single site, 
single 
organization 

 Fully collocated 
Single site, 
single 
organization 

1       

2     Same building or 
complex  

3  
Multiple sites 
within close 
proximity 

Single site, 
multiple 
organizations 

   

4     Same city or 
metro area  

5 
Two sites or 
several 
organizations 

    
Multiple 
development 
sites 

6     Multi-city or           
multi-company  

7 
Two sites and 
several 
organizations 

Multiple sites 
within one 
hour 
separation 

Multiple sites, 
same general 
location, or 
mixed clearance 
levels 

   

8     Multi-city and          
multi-company  

9 

Five or more sites 
or complex 
organization 
interfaces 

     

10 

Five or more sites 
and complex 
organization 
interfaces 

Multiple sites 
with greater 
than one hour 
separation 

Multiple sites, 
located  50 miles 
or more apart, or 
international 
participation 

 International 

Multiple sites, 
located  50 miles 
or more apart, or 
international 
participation 

 

The personnel continuity (PCON) (Table I-34) parameter describes the 
software development team’s average annual turnover rate at the 
commencement of full-scale software development.  This evaluation is 
based on historic— not anticipated— turnover rates. 
 

Table I-34: Personnel continuity rating values 
PCON – Personnel Continuity 

Value CA Definition 41 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0     3% per year  
1       
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PCON – Personnel Continuity 

Value CA Definition 41 Sage SEER-SEM REVIC` COCOMO II PRICE-S 
2       
3     6% per year  
4       
5     12% per year  
6       
7     24% per year  
8       
9       
10     48% per year  

 

I.8.4 Product 
The product characteristics impacts are discussed in detail in Section 10 
(Product characteristics evaluation). 

The software complexity rating (CPLX) (Table I-35), also referred to as 
staffing complexity, is a rating of the software system's inherent 
difficulty to produce in terms of the rate at which staff can be added to a 
project.  The complexity is affected by the instruction mix (as in PRICE-
S), as well as the algorithmic complexity of the software product.   
 

Table I-35: Product complexity (staffing) rating values 
CPLX – Complexity (Staffing) 

Value CA Definition 11 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 

Extremely simple 
S/W with simple 
code, simple 
input/output (I/O) 
and internal 
storage arrays 

Extremely 
simple S/W 
with simple 
code, simple 
I/O, and 
internal 
storage 
arrays 

Extremely simple 
S/W with simple 
code, simple I/O, 
and internal 
storage arrays 

Extremely simple 
S/W with simple 
code, simple I/O, 
and internal 
storage arrays 

Extremely simple 
S/W with simple 
code, simple I/O, 
and internal 
storage arrays 

 

1      User-
defined/math 

2 

Computational 
efficiency has 
some impact on 
development effort 

Low logical 
complexity, 
simple I/O 
and internal 
data storage 

Low logical 
complexity, 
simple I/O and 
internal data 
storage 

Low logical 
complexity, 
simple I/O and 
internal data 
storage 

Low logical 
complexity, 
simple I/O and 
internal data 
storage 

String 
manipulation 

3       

4 

New standalone 
systems developed 
on firm operating 
systems.  Minimal 
interface problems 

New 
standalone 
systems 
developed on 
firm operating 
systems.  
Minimal 
interface 
problems 

New standalone 
systems 
developed on 
firm operating 
systems.  
Minimal interface 
problems 

New standalone 
systems 
developed on 
firm operating 
systems.  
Minimal interface 
problems 

New standalone 
systems 
developed on 
firm operating 
systems.  
Minimal interface 
problems 

Data 
Management 

5 
Typical command 
and control 
programs 

Typical 
command 
and control 
programs 

Typical 
command and 
control programs 

Typical 
command and 
control programs 

Typical 
command and 
control programs 

Online command 
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CPLX – Complexity (Staffing) 

Value CA Definition 11 Sage SEER-SEM REVIC COCOMO II PRICE-S 

6 

Minor real-time 
processing, 
significant logical 
complexity, some 
changes to OS 

     

7  

Significant 
logical 
complexity, 
perhaps 
requiring 
changes to 
development 
OS, minor 
real-time 
processing  

Significant 
logical 
complexity, 
perhaps 
requiring 
changes to 
development 
OS, minor real-
time processing  

Significant 
logical 
complexity, 
perhaps 
requiring 
changes to 
development 
OS, minor real-
time processing  

Significant 
logical 
complexity, 
perhaps 
requiring 
changes to 
development 
OS, minor real-
time processing  

Real-time 

8 

Challenging 
response time 
requirements, new 
system with 
significant interface 
and interaction 
requirements 

New systems 
with 
significant 
interfacing 
and 
interaction 
requirements 
in a larger 
system 
structure 

New systems 
with significant 
interfacing and 
interaction 
requirements in 
a larger system 
structure 

New systems 
with significant 
interfacing and 
interaction 
requirements in 
a larger system 
structure 

New systems 
with significant 
interfacing and 
interaction 
requirements in 
a larger system 
structure 

Operating 
systems/interacti
ve commands 

9       

10 

Very large data 
processing volume 
in a short time, 
signal processing 
system with 
complex interfaces. 

Development 
primarily 
using micro 
code for the 
application 

Development 
primarily using 
micro code for 
the application 

Development 
primarily using 
micro code for 
the application 

Development 
primarily using 
micro code for 
the application 

 

 
 
The database size (Table I-36) parameter captures the effect that large 
data requirements have on the software product development.  The rating 
is determined by calculating D/P, the ratio of bytes in the database to 
SLOC in the program. 
 

Table I-36: Database size rating values 
Database Size 

Value CA Definition 21 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 No database      

1 
Database (DB) 
size/ 
SLOC = 5 

     

2 

DB size/SLOC = 
10.  Data easily 
managed.  
Requirements/struc
ture known. 

  D/P SLOC<10 D/P SLOC<10  

3       

4 DB size/SLOC = 30   10<D/P<100 10<D/P<100  
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Database Size 

Value CA Definition 21 Sage SEER-SEM REVIC COCOMO II PRICE-S 

5 

DB size/SLOC = 
55.  Nominal DB 
size.  Not access 
bound nor other 
critical constraint 

     

6       

7 DB size/SLOC = 
450   100<D/P<1000 100<D/P<1000  

8 

DB size/SLOC = 
1,000.  High 
access/performanc
e requirements 

  D/P>1000 D/P>1000  

9       

10       

 
The Special Display Requirements (DISP) (Table I-37) rating specifies 
the amount of effort to implement user interface and other display 
interactions that cannot be accounted for by product size alone. 
 

Table I-37: DISP rating values 
DISP – Special Display Requirements 

Value CA Definition 16 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 No displays Simple I/O 
requirements 

Simple 
input/outputs:  
batch programs 

   

1       

2       

3 A few simple 
displays      

4  

User-friendly 
(extensive 
human 
engineering) 

User-friendly; 
error recovery 
and menus, 
basic Windows 
GUI not 
controlled by the 
application 

   

5 

User-friendly error 
recovery and 
menus, character 
based, window 
formats, color 

     

6       

7 

Interactive: touch 
screens, light pens, 
mouse, etc. 
Controlled by the 
computer program 
(graphics based – 
1990s) 

Interactive 
(mechanical 
user 
interface) 

Interactive: light 
pen, mouse, 
touch screen, 
windows, etc. 
Controlled by the 
software being 
developed 

   

8       

9 

High human-in-the-
loop dependencies. 
Many interactive 
displays, monitors, 
or status inputs 
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DISP – Special Display Requirements 

Value CA Definition 16 Sage SEER-SEM REVIC COCOMO II PRICE-S 

10 

Complex 
requirements. 
Computer-Aided 
Design/Computer-
Aided 
Manufacturing 
(CAD/CAM) Solid 
Modeling. Many 
interactive displays 
or status outputs 
(e.g., real-time 
alarms) 

Complex 
requirements 
with severe 
impact 
(CAD/CAM) 

Complex: 
CAD/CAM, 3D 
solid modeling 

   

 
The software development re-hosting (HOST) (Table I-38) parameter 
evaluates the effort to convert the software product from the development 
system to the target system.  This rating is not applied to projects devoted 
to “porting” software from one system to another. 
 

Table I-38: Development re-hosting requirements rating values 
HOST – Development Re-hosting 

Value CA Definition 19 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 No rehosting 
required 

No rehosting, 
common 
language and 
system 

No rehosting, 
same language 
and system 

   

1       

2       

3 
Minor language or 
minor system 
change 

Minor 
language or 
minor system 
change 

    

4   
Minor language 
and system 
change 

   

5 
Minor language 
and minor system 
change 

Minor 
language and 
minor system 
change 

    

6       

7 
Major language or 
major system 
change 

Major 
language or 
major system 
change 

Major language 
system change    

8       

9       

10 
Major language 
and major system 
change 

Major 
language and 
major system 
change 

Major language 
and system 
change 

   

 
The Integration - External (INTEGE) (Table I-39) parameter is used by 
PRICE-S to describe the level of difficulty of integrating and testing the 
CSCIs at the system level.   
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Table I-39: INTEGE requirements rating values 
INTEGE – External Integration 

Value CA Definition 30 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 

Loosely coupled 
interfaces/minimum 
operational 
constraints 

    

Loosely coupled 
interfaces/minim
um operational 
constraints 

1       
2       
3       
4       

5 Nominal coupling 
and constraints     

Nominal 
coupling and 
constraints 

6       
7       
8       
9       

10 

Tightly coupled 
interfaces/strict 
operational 
constraints 

    

Tightly coupled 
interfaces/strict 
operational 
constraints 

 
The PRICE-S Integration - Internal (INTEGI) (Table I-40) parameter 
describes the level of effort involved in integrating and testing the 
software product components up to the CSCI level.  
 

Table I-40: INTEGI requirements rating values 
INTEGI – Internal Integration 

Value CA Definition 22 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 

Loosely 
coupled/minimum 
constraints and 
interaction 

    

Loosely 
coupled/minimu
m constraints 
and interaction 

1       
2       
3       
4       

5 

Typical/closely 
coupled 
interfaces/many 
interrupts 

    

Typical/closely 
coupled 
interfaces/many 
interrupts 

6       
7       
8       
9       

10 Tightly coupled,  
strict constraints     Tightly coupled, 

strict constraints 

 
The target system Memory Constraint (MEMC) (Table I-41) rating 
evaluates the development impact of anticipated effort to reduce 
application storage requirements.  This attribute is not simply a measure 
of memory reserve, but is intended to reflect the effort required by the 
software developers to reduce memory usage.  Using 99 percent of 
available resources represents no constraint if no effort was required to 
conserve resources. 

• COCOMO II – The memory constraint (STOR) is used in the 
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COCOMO family of estimating tools to represent the main 
storage constraint imposed on a software system or subsystem 
development.   

 
Table I-41: Memory constraints rating values 

MEMC – Target System Memory Constraints 

Value CA Definition 13 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
Greater than 50% 
reserve of memory 
available 

No memory 
economy 
measures 
required 

No memory 
constraints 

Greater than 
50% reserve of 
memory 
available 

Greater than 
50% reserve of 
memory 
available 

No memory 
economy 
measures 
required 

1 45% reserve 
available   45% reserve 

available 
45% reserve 
available  

2 40% reserve 
available   40% reserve 

available 
40% reserve 
available  

3 35% reserve 
available 

Some overlay 
use or 
segmentation 
required 

Some overlay 
use or 
segmentation 
required 

35% reserve 
available 

35% reserve 
available 

Some overlay 
use or 
segmentation 
required 

4 30% reserve 
available   30% reserve 

available 
30% reserve 
available  

5 25% reserve 
available   25% reserve 

available 
25% reserve 
available  

6 20% reserve 
available   20% reserve 

available 
20% reserve 
available  

7 15% reserve 
available 

Extensive 
overlay 
and/or 
segmentation 
required 

Extensive 
overlay and/or 
segmentation 
required 

15% reserve 
available 

15% reserve 
available 

Extensive 
overlay and/or 
segmentation 
required 

8 10% reserve 
available   10% reserve 

available 
10% reserve 
available  

9 7% reserve 
available   7% reserve 

available 
7% reserve 
available  

10 Additional memory 
must be provided 

Complex 
memory 
management 
economy 
measure 

Complex 
memory 
management 
economy 
measure 

Additional 
memory must be 
provided 

Additional 
memory must be 
provided 

Complex 
memory 
management 
economy 
measure 

 
The platform (PLAT) (Table I-42) parameter describes the customer's 
requirements stemming from the planned operating environment.  It is a 
measure of the portability, reliability, structuring, testing, and 
documentation required for acceptable contract performance.   
 

Table I-42: Software platform rating values 
PLAT – Platform 

Value CA Definition 42 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0    Ground systems  Ground systems 
1       

2    Mil-spec ground 
systems  Mil-spec ground 

systems 
3       
4    Unmanned  Unmanned 
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PLAT – Platform 

Value CA Definition 42 Sage SEER-SEM REVIC COCOMO II PRICE-S 
airborne airborne 

5    Manned airborne  Manned airborne 

6    Unmanned 
space  Unmanned 

space 
7       
8    Manned space  Manned space 
9       
10    Manned space  Manned space 

 
The Required Software Reliability (RELY) (Table I-43) parameter is the 
measure of the extent to which the software product must perform its 
intended function over a period of time.  If the effect of a software failure 
is only slight inconvenience, then RELY is very low.  If a failure would 
risk human life, then RELY is very high. This parameter defines planned, 
or required, reliability; it is not related to the Requirements Volatility  
(RVOL) due to inadequate requirements definition and planning.  This 
cost driver can be influenced by the requirement to develop software for 
reusability (see the description for RUSE).  
 

Table I-43: RELY rating values 
RELY – Required Software Reliability 

Value CA Definition 14 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 Failure results in 
loss to human life 

Risk to human 
life 

Risk to human 
life 

Risk to human 
life 

Risk to human 
life  

1       

2 High financial loss High financial 
loss 

High financial 
loss 

High financial 
loss 

High financial 
loss  

3       

4       

5 Moderate 
recoverable loss 

Moderate, 
easily 
recoverable 
loss 

Moderate, 
easily 
recoverable 
loss 

Moderate, easily 
recoverable loss 

Moderate, easily 
recoverable loss 

 

6       

7 Minor 
inconvenience 

Low, easily 
recoverable 
loss 

Low, easily 
recoverable 
loss 

Low, easily 
recoverable loss 

Low, easily 
recoverable loss 

 

8       

9       

10 No requirement Slight 
inconvenience 

Slight 
inconvenience 

Slight 
inconvenience 

Slight 
inconvenience 

 

 
The Real-time Operations (RTIM) (Table I-44) rating evaluates the 
impact of the fraction of the software product that interacts with the 
outside environment.  Usually, consider these communications as driven 
by the external environment or clock.  This fraction will be large in 
event-driven systems such as process controllers and interactive systems.  
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The real-time rating is related to system behavior, not execution speed.  
Speed is evaluated by the TIMC parameter. 

Table I-44: RTIM requirements rating values 
RTIM – Real-time Operations Requirements 

Value CA Definition 29 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
0% of source lines 
with real-time 
considerations 

Less than 
25% of source 
code devoted 
to real-time 
operations 

0% of source 
lines with real-
time 
considerations 

   

1       

2       

3       

4 
25% of source lines 
with real-time 
considerations 

Approximately 
50% of source 
code devoted 
to real-time 
operations 

25% of source 
lines with real-
time 
considerations 

   

5       

6       

7 
75% of source lines 
with real-time 
considerations 

Approximately 
75% of source 
code devoted 
to real-time 
operations 

75% of source 
lines with real-
time 
considerations 

   

8       

9       

10 
100% of source 
lines with real-time 
considerations 

Nearly 100% 
of source 
code devoted 
to real-time 
operations 

100% of source 
lines with real-
time 
considerations 

   

 
The system RVOL (Table I-45) parameter evaluates the expected 
frequency and scope of requirements changes after baseline (SRR).  
Changes include both major and minor perturbations. 
 

Table I-45: System requirements volatility rating values 
RVOL – System Requirements Volatility 

Value CA Definition 9/10 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 No changes 
Essentially no 
requirements 
changes 

Essentially no 
requirements 
changes 

No changes  No changes 

1       
2       

3 Very few changes 
expected 

Familiar 
product, small 
noncritical 
redirections 

Small 
noncritical 
redirections 

Very few 
changes 
expected 

  

4       

5 

Minor changes to 
requirements caused 
by design reviews or 
changing mission 
requirements 

Known 
product, 
occasional 
moderate 
redirections 

Occasional 
moderate 
redirections, 
typical for 
evolutionary 
software 
developments 

Minor changes 
to requirements 
caused by 
design reviews 
or changing 
mission 
requirements 
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RVOL – System Requirements Volatility 

Value CA Definition 9/10 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

6   

Evolutionary 
software 
development 
with significant 
user interface 
requirements 

   

7 

Some significant 
changes expected 
(none late in 
development phase) 

Technology 
exists, 
unfamiliar to 
developer 

 

Some 
significant 
changes 
expected (none 
late in 
development 
phase) 

 Changing 
requirements 

8   

Frequent 
moderate & 
occasional 
major 
changes 

   

9      New hardware  

10 

Expect major changes 
occurring at different 
times in development 
phase 

Technology is 
new, frequent 
major 
redirections 

Frequent 
major 
changes 

Expect major 
changes 
occurring at 
different times 
in development 
phase 

 
Parallel 
hardware 
development 

 
CPLX1 (PRICE-S) - Complexity (See Requirements Volatility [RVOL]). 
 
The System Security Requirement (SECR) (Table I-46) parameter 
evaluates the development impact of application software security 
requirements.  Apply this parameter only if the software product is 
required to implement the security requirement.  The Common Criteria 
Evaluation Assurance Level (EAL) describes the mission assurance 
category assigned to the system and the level of assurance mandated in 
the controls (DoDD 8500.1 and DoDI 8500.2). 
 

Table I-46: System security requirement rating values 
SECR – System Security Requirement 

Value CA Definition 28 Sage SEER-SEM REVIC COCOMO II PRICE-S 

0 
Class D: Minimal 
protection – no 
security 

CC EAL0:  
No security 
requirements 
(OB Class D) 

Class D: Minimal 
protection – no 
security 

   

1  
CC EAL1:  
Functional 
test   

    

2 

Class C1: Access 
limited. Based on 
system controls 
accountable to 
individual user or 
groups of users. 
Simple project 
specific password 
protection 

CC EAL2:  
Structural 
test (OB 
Class C1) 

Class C1: 
Access limited. 
Based on 
system controls 
accountable to 
individual user or 
groups of users. 
Simple project 
specific 
password 
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SECR – System Security Requirement 

Value CA Definition 28 Sage SEER-SEM REVIC COCOMO II PRICE-S 
protection 

3       

4 

Class C2: Users 
individually 
accountable via 
login operations, 
auditing of security 
relevant events and 
resource isolation 
(typical VAX 
operating system 
such as Virtual 
Memory 
System).VMS). 

CC EAL3:  
Methodical 
test and 
check (OB 
Class C2) 

Class C2: Users 
individually 
accountable via 
login operations, 
auditing of 
security relevant 
events and 
resource 
isolation (typical 
VAX operating 
system such as 
Virtual Memory 
System).VMS). 

   

5       

6 

Class B1: In 
addition to C2, data 
labeling and 
mandatory access 
control are present. 
Flaws identified by 
testing are 
removed (classified 
or financial 
transaction 
processing). 

CC EAL4:  
Methodical 
design, test 
and review 
(OB Class 
B1) 

Class B1: In 
addition to C2, 
data labeling and 
mandatory 
access control 
are present. 
Flaws identified 
by testing are 
removed 
(classified or 
financial 
transaction 
processing). 

   

7       

8 

Class B2: System 
segregated into 
protection critical 
and non-protection 
critical elements. 
Overall system 
resistant to 
penetration (critical 
financial 
processing) 

CC EAL5:  
Semiformal 
design and 
test (OB 
Class B2) 

Class B2: 
System 
segregated into 
protection critical 
and non-
protection critical 
elements. 
Overall system 
resistant to 
penetration 
(critical financial 
processing) 

   

9 

Class B3: System 
excludes code not 
essential to 
security 
enforcement. Audit 
capability is 
strengthened. 
System almost 
completely 
resistant to 
protection. 

CC EAL6:  
Semiformal 
verification, 
design and 
test (OB 
Class B3) 

Class B3: 
System excludes 
code not 
essential to 
security 
enforcement. 
Audit capability 
is strengthened. 
System almost 
completely 
resistant to 
protection. 

   

10 

Class A1: Security 
formally verified by 
mathematical proof 
(only a few known 
systems) 

CC EAL7:  
Formal 
verification, 
design and 
test (OB 
Class A) 

Class A1: 
Security formally 
verified by 
mathematical 
proof (only a few 
known systems) 
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The system Central Processing Unit (CPU) timing constraint (TIMC) 
(Table I-47) rating evaluates the development impact of anticipated effort 
to reduce application response time requirements.  TIMC evaluates the 
impact of limited processor capability and special measures needed to 
meet time related performance requirements by specifying the percentage 
of application software that must be developed with timing performance 
issues incorporated. 
 

• COCOMO II, REVIC – The execution Time Constraint (TIME) 
parameter is used by the COCOMO family of estimating tools 
to specify the CPU timing constraint impact. 

• PRICE-S – The resource utilization parameter UTIL specifies 
the fraction of available hardware cycle time, or total memory 
capacity. The parameter describes the extra effort needed to 
adapt software to operate within limited processor and memory 
capabilities. 

 
Table I-47: CPU timing constraints rating values 

TIMC – System CPU Timing Constraint 

Value CA Definition 12 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 

50% CPU power 
still available during 
maximum 
utilization 

No CPU time 
constraints 

No CPU time 
constraints 

<50% of source 
code time 
constrained 

<50% of source 
code time 
constrained 

No CPU time 
constraints 

1 

45% CPU power 
still available during 
maximum 
utilization 

     

2 

40% CPU power 
still available during 
maximum 
utilization 

     

3 

35% CPU power 
still available during 
maximum 
utilization 

     

4 

30% CPU power 
still available during 
maximum 
utilization 

Approximately 
25% of source 
code time 
constrained 

Approximately 
25% of source 
code time 
constrained 

Approximately 
70% of source 
code time 
constrained 

Approximately 
70% of source 
code time 
constrained 

Approximately 
25% of source 
code time 
constrained 

5 

25% CPU power 
still available during 
maximum 
utilization 

     

6 

20% CPU power 
still available during 
maximum 
utilization 

     

7 

15% CPU power 
still available during 
maximum 
utilization 

Approximately 
50% of source 
code time 
constrained 

Approximately 
50% of source 
code time 
constrained 

Approximately 
85% of source 
code time 
constrained 

Approximately 
85% of source 
code time 
constrained 

Approximately 
50% of source 
code time 
constrained 

8 

10% CPU power 
still available during 
maximum 
utilization 
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TIMC – System CPU Timing Constraint 

Value CA Definition 12 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

9 

7% CPU power still 
available during 
maximum 
utilization 

     

10 

5% CPU power still 
available during 
maximum 
utilization 

Approximately 
75% of source 
code time 
constrained 

Approximately 
75% of source 
code time 
constrained 

Approximately 
95% of source 
code time 
constrained 

Approximately 
95% of source 
code time 
constrained 

Approximately 
75% of source 
code time 
constrained 

 
The target system volatility (TVOL) (Table I-48) parameter rates the 
anticipated stability (instability) created by changes and/or failures in the 
target system including hardware, tools, operating systems, and 
languages or compilers.  A major change (or failure) requires redirection 
to continue the development.  A minor change (or failure) allows 
workarounds to practices shortcomings and weaknesses. 

Table I-48: TVOL rating values 
TVOL – Target System Volatility 

Value CA Definition 3 Sage SEER-SEM REVIC` COCOMO II PRICE-S 

0 No hardware 
development 

No major 
changes, 
annual minor 
changes 

No major 
changes, minor 
changes each 
year 

   

1       

2       

3 

Small amount of 
hardware 
development, 
localized impact on 
software 

Annual major 
changes, 
monthly minor 
changes 

Major change 
each 12 months, 
minor each 
month 

   

4       

5 

Some overlaps of 
development. Most 
hardware available 
for testing software 
and vice versa 

Semiannual 
major 
changes, 
biweekly minor 
changes 

Major change 
each six months, 
minor each two 
weeks 

   

6       

7 
Much overlap, little 
hardware available 
for testing 

Bimonthly 
major 
changes, 
weekly minor 
changes 

Major changes 
each two 
months, minor 
each week 

   

8       

9       

10 

Simultaneous 
development, 
separate 
organizations, etc. 

Biweekly 
major 
changes, 
minor changes 
every two days 

Major change 
each two weeks, 
minor two times 
a week 
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